

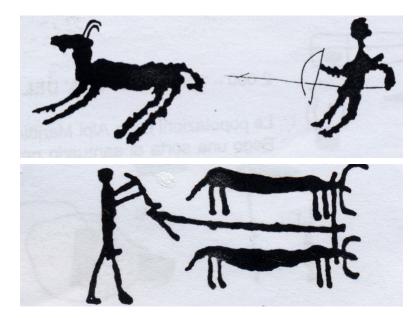
4th one-day symposium of the Animal Task Force & the EAAP Commission on Livestock Farming Systems: Livestock are more than food

"Influence of pastoral management on the conservation of the cultural landscapes and biodiversity of mountain pastures"

> Massimiliano Probo Caren Pauler

Contents

- Origin of mountain grasslands
- Ecosystem services and biodiversity
- Livestock and biodiversity
- Site-adapated pastoral management
- Trends, challenges and perspectives



O

Semi-natural alpine grasslands as cultural landscapes

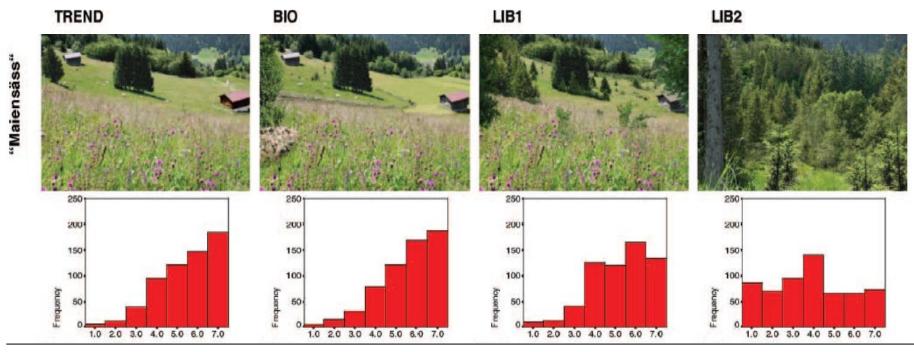
 15000 BC: Human alpine settlements at the end of the Ice Age, hunting

From 5500 to 4000 BC: Livestock rearing, vertical transhumance and alpine agriculture

- From 4000 BC to 0 (Celts): "Alps" from "Aulp" = pasture -> "the mountains of pastures"
- Roman period: trade in Alpine livestock products
- Middle Age: internal migrations, development of middle elevation meadows

Alpine grasslands: ecosystem services

- Biodiversity
- Food production
- Aesthetic value and touristic attractiveness
- Cultural heritage (Swiss Alpine pasture season: UNESCO Intangible Cultural Heritage of Humanity)
- Carbon sequestration and nutrient cycling
- Wildfire, erosion and flood control
- Pollination
- Water purification



Preferences towards alpine landscapes

Differences in preferences towards potential future landscapes in the Swiss Alps (Soliva et al., 2010):

3 scenarios of land-use and landscape change based on conservation and agricultural policy drivers:

- 1) Continuation of current trends
- 2) Liberalization (agricultural markets are liberalized and agri-environmental regulations abolished)
- 3) Biodiversity enhancement (less conventional farms, more land managed by NGOs)

Biodiversity of mountain grasslands

- One of the most biodiverse habitats in the world (Dengler et al., 2014)
- Within limited spatial extents, vascular plant diversity may exceed even that of tropical rainforests
- World records: 89 plant species within 1m² in Central Argentina;
 105 and 131 species within 16 to 49 m² in the Carpathians
- More than 75% of the 4485 plant species recorded in the Alps are linked to grassland habitats

Biodiversity of mountain grasslands

Several <u>ecological factors</u> determine this high biodiversity:

- 1. 'island nature' of mountains (endemisms)
- 2. high topographic variability (altitude, slope, aspect, roughness): influence on micro-climate (solar radiation, temperature, snow cover duration, etc.) and soil (soil types, moisture, nutrient content, etc.)
- 3. coexistence of **natural grasslands** above the treeline and **semi-natural grasslands** below (traditional agricultural practices)

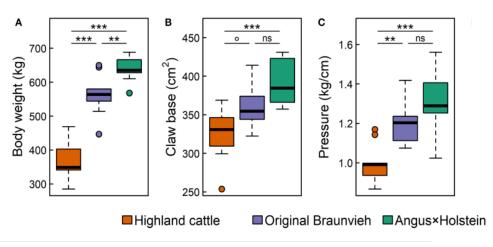
Impact of livestock on plant diversity

Grazing livestock influences the environment directly and indirectly by :

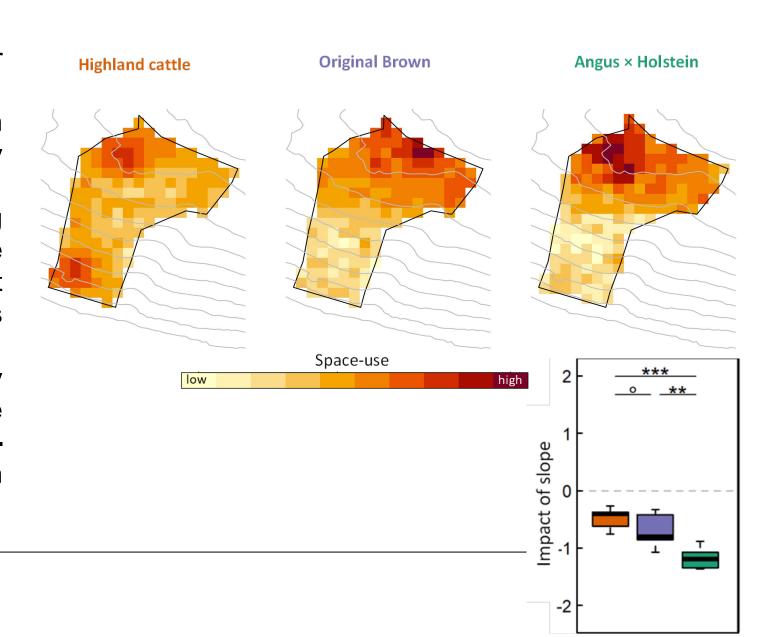
- 1. Selective defoliation
- 2. Trampling
- 3. Nutrient redistribution
- 4. Seed transport

Thereby, grazers alter the competition for light and nutrients among species within the plant community, thus shaping its botanical composition

Effects of selective defoliation and trampling on biodiversity


- Moderate and patchy defoliation and trampling increases biodiversity
- Intensively grazed areas have lower diversity: a few rosette, stoloniferous, spiny and toxic species
- Feeding preferences of livestock: grazers vs browsers
- Modern breeding with negative effects on biodiversity: livestock with higher productivity, weight, pressure per cm², nutrient demand, selectivity, and higher use of the flattest areas

Grazing Allometry: Anatomy, Movement, and Foraging Behavior of Three Cattle Breeds of Different Productivity

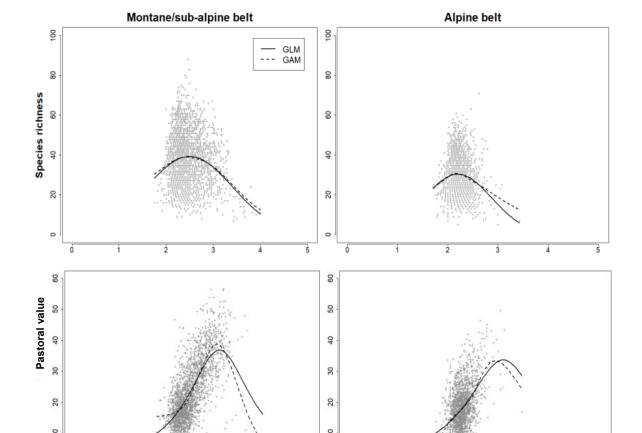

Caren M. Pauler^{1,2,3}, Johannes Isselstein², Joel Berard^{4,5}, Thomas Braunbeck³ and Manuel K. Schneider^{1*}

Effects of nutrient and seed redistribution on biodiversity

- Uneven use of pastures: higher use of the flattest areas
- Nutrients transported through animal excretions, seeds by endozoochory and epizoochory
- Uneven spatial distribution of dung pats and urine: excretions are mainly deposited in localized flat resting areas, while steeper areas are nutrient depleted
- Increase of pasture heterogeneity and biodiversity at the landscape level: gradient from nutrientpoor to nutrient-rich vegetation communities

Relationship with soil nutrient content

Ecological Indicators
Volume 85, February 2018, Pages 518-524


Research pape

Plant diversity and pastoral value in alpine pastures are maximized at different nutrient indicator values

Marco Pittarello 々 ॼ , Michele Lonati, <u>A</u>lessandra Gorlier, Elisa Perotti, Massimiliano Probo, Giampiero Lombardi

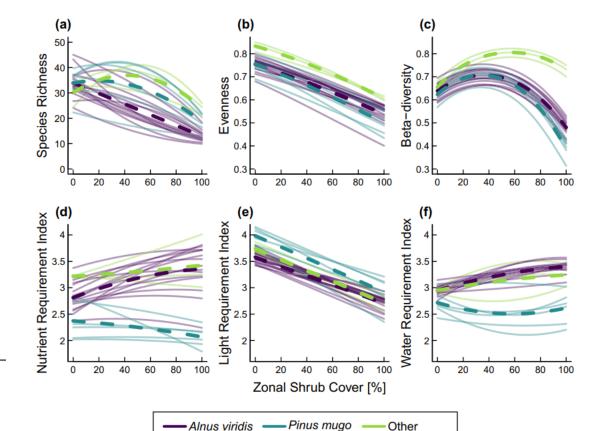
N Landolt

- Low and high amounts of soil nutrients = lowest diversity and forage quality
- Lower plant diversity at higher elevations
- Trade-off between plant diversity and pasture productivity: plant diversity peaked at intermediate N values, while pastoral value peaked at higher N values
- Importance of having different grassland types at the landscape scale

N Landolt

Current trends: extensification and intensification of alpine pastures

- Intensification of the most productive areas
- Extensification and abandonment of the most marginal ones: woody encroachment
- Both trends: decrease of plant diversity



ATF-EAAP Symposium 2024 Massimiliano Probo Alpine Botany (2020) 130:141–156 https://doi.org/10.1007/s00035-020-00241-8

ORIGINAL ARTICLE

Dominant shrub species are a strong predictor of plant species diversity along subalpine pasture-shrub transects

Tobias Zehnder^{1,2} · Andreas Lüscher¹ · Carmen Ritzmann¹ · Caren M. Pauler¹ · Joel Berard^{3,4} · Michael Kreuzer² · Manuel K. Schneider¹

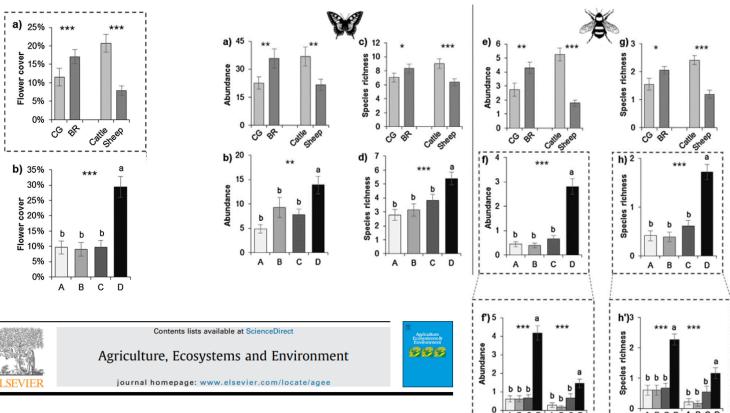
Necessity to define a site-adapted pastoral management

To define a site-adapted pastoral management it is essential to define the:

- 1. Livestock category
- 2. Grazing system
- 3. Animal stocking rate
- 4. Grazing frequency
- 5. Grazing length
- 6. Specific agro-pastoral practices

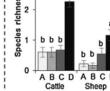
Pastoral management: effects of grazing systems on biodiversity

- Historically: a large number of small family herds and herding-based grazing systems
- Recent decades: lower number of farms and workers per farm, higher average number of animals per herd
- Free-roaming livestock: more selective and spatially heterogeneous grazing (over- and undergrazing), negative effects on biodiversity
- Solution: **rotational grazing systems** -> reduction of livestock selectivity. Beneficial effects on biodiversity, increased connectivity among plant communities


RESEARCH ARTICLE		Applied Vegeta	ntion Science Siavs
A 5-year rotational grazing changes the botanical composition of sub-alpine and alpine grasslands			
Elisa Perotti ¹ Massimiliano Probo ² Marco Pittarello ³ Michele Lonati ¹ Giampiero Lombardi ¹			
	2011	2016	
Variables	Mean ± SE	Mean ± SE	p-value
Sp. richness	28.72 ± 0.622	36.11 ± 0.814	***
H' index	3.35 ± 0.040	3.51 ± 0.042	***

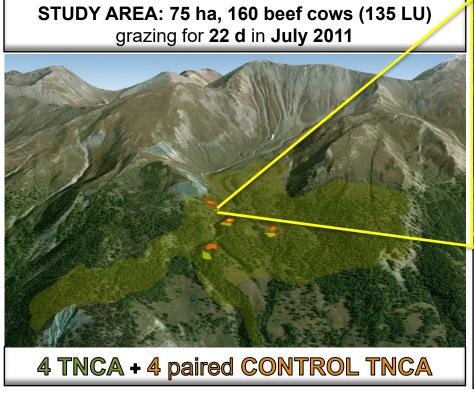
Pastoral management: effects of grazing frequency on biodiversity

- Multiple grazing events during vegetative the season: necessity of enough time for grass regrowth
- Frequent grazing: presence of species with high resistance to defoliation
- Early grazing beneficial to control shrub and coarse plant development
- Longer resting time (at the peak of forb flowering season): beneficial effects on biodiversity, long-term but trade-offs



A biodiversity-friendly rotational grazing system enhancing flower-visiting insect assemblages while maintaining animal and grassland productivity

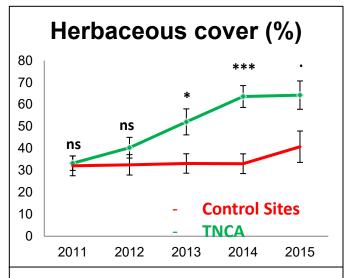
Simone Ravetto Enri^a, Massimiliano Probo^a, Anne Farruggia^{b,*}, Laurent Lanore^b, André Blanchetete^c, Bertrand Dumont^b

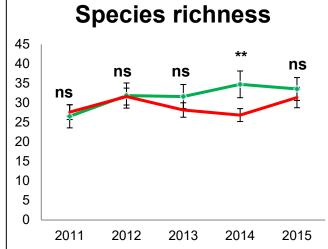


O

Grazing management: effects of one pastoral practice on biodiversity

Temporary night camp areas (TNCA) for cattle on steep and shrub-encroached locations


- Cattle for 2 consecutive nights within each area, delimited with electric fences
- Mean extent of TNCA: 1107 m²
- Stocking density: 0.12 LU m⁻²


High grazing pressure, trampling, deposition of urine and dung, and seed transportation

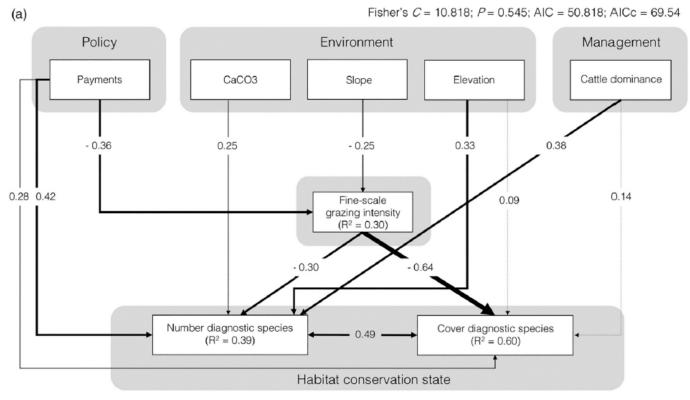
Restoration of sub-alpine shrub-encroached grasslands through pastoral practices: effects on vegetation structure and botanical composition

Marco Pittarello igttimes, Massimiliano Probo igttimes, Michele Lonati igttimes, Giampiero Lombardi igttimes

Effects on vegetation

Current challenges for the conservation of pasture biodiversity

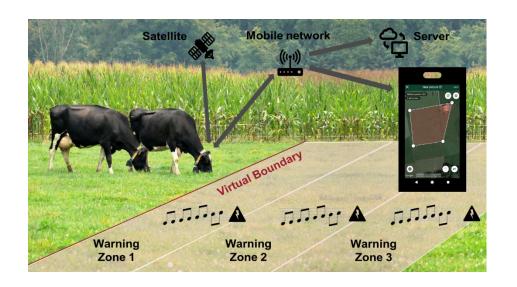
- Lower income and direct payment policies, which are ruled-focused -> minimum stocking rates, grazing dates, specific pasture management actions (e.g. shrubclearing) -> ineffective results
- Increased pressure of large predators -> expensive and time-consuming protective measures, reduction of small ruminants
- Climate change -> impact on water availability (increasing drought periods, reduction of water from glaciers) and on forage yield, quality and botanical composition


Future perspectives

 Results-based policies to promote new site-adapted management strategies. Swiss system: farm-level grazing contracts and periodic field monitoring

Agri-environmental payments drive the conservation and forage value of semi-natural grasslands by modifying fine-scale grazing intensity

Francesca Napoleone ^{a, *}, Massimiliano Probo ^b, Pierre Mariotte ^b, Simone Ravetto Enri ^c, Michele Lonati ^c, Giovanni Argenti ^d, Sabina Burrascano ^a



 Development of sustainable silvopastoral systems: better adaptation to Cimate Change, reduction of wildfire risks and provision of different ES

Future perspectives

- Improved knowledge transfer: www.paturalpina.ch
- New technologies: airborne sensor systems, GPStracking systems, virtual fencing

Take-aways

- Heritage and environmental importance
- How to achieve a site-adapated pastoral management
- Importance of targeted political measures

massimiliano.probo@agroscope.admin.ch

