The importance of animal manures for the biogases industry

ATF Seminar, 20/11/2024, Brussels

Lucile Sever, EBA Policy Officer for Circular Economy

EBA – representing the full value chain

≤ 300

MEMBERS

COMPANIES

250

50

NATIONAL ASSOCIATIONS

35

COUNTRIES

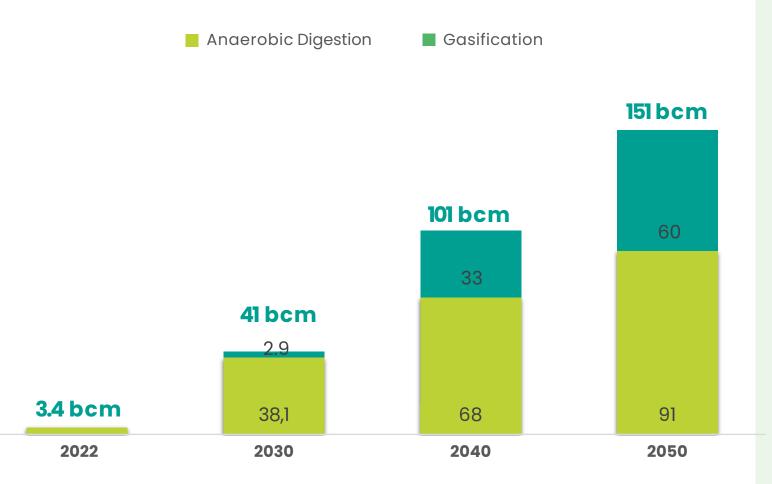
21 bcm of biogases in Europe in 2022

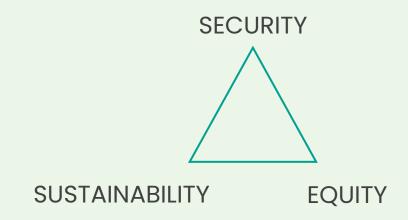
Combined biomethane and biogas production in Europe



= 6% EU gas consumption

Energy from biogas (bcm) ■ Energy from biomethane (bcm)




Enabling a resilient transition

Production potential in EU-27 until 2050 compared to existing production (bcm)

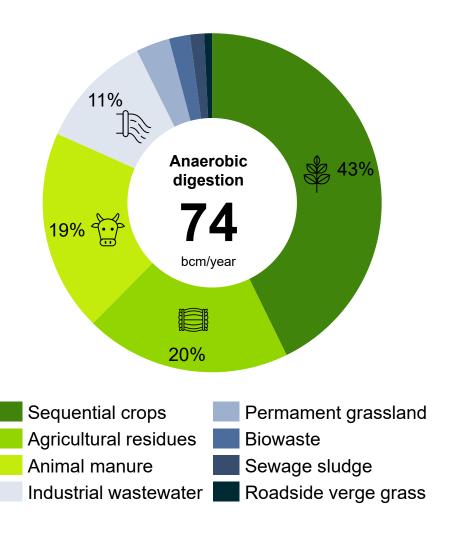
2040

Biomethane production could supply 85% of gaseous fuels demand

Balancing the TRILEMMA while responding to great societal challenges: waste management, farming emissions abatement, affordability.

2040 Anaerobic digestion feedstock mix: dominated by sequential crops, agricultural residues and manure

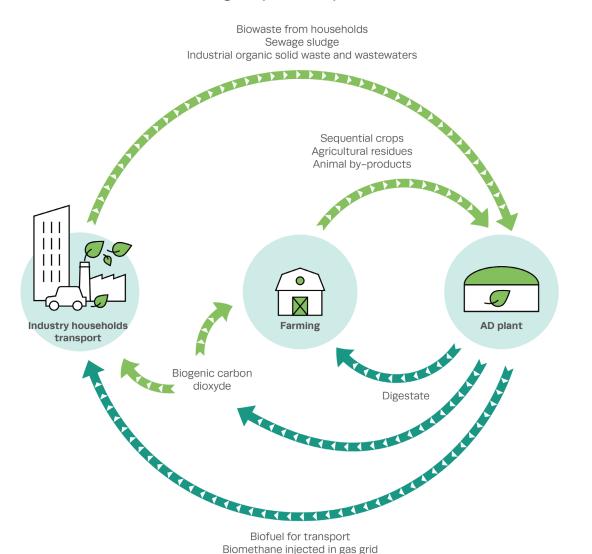
2040 AD potential in Europe:


■ 74 bcm/yr in Europe

Main feedstocks:

- Sequential cropping
- Agri residues
- Manure
- Industrial wastewater

Top 5 countries:


- Germany
- France
- Spain
- Italy
- Poland

What is digestate?

Schematic overview of the inputs and outputs of the biogases production process

Electricity and heat

During anaerobic digestion, biogas is produced along with digestate.

Digestate contains a higher proportion of **readily** available nutrients than in the raw feedstock.

The same amount of stabilised organic matter is present in the digestate than in the raw feedstock.

→ Digestate is a valuable organic fertiliser and soil improver.

Digestate: an alternative to synthetic fertilisers

31 Mt (DM)

digestate produced Europe, **2022**

Digestate can already displace:

15%

Nitrogen-based fertilisers

(N demand in EU-27: 11.1 Mt/year)

11%

Phosphorus fertilisers

(P demand in EU-27: 2.8 Mt/year)

6%

Potassium fertilisers

(K demand in EU-27: 3.1 Mt/year)

GHG reduction potential when displacing synthetic N-fertilizers with digestate

10 Mt of CO₂ equivalent in 2022

Natural gas is the main feedstock and energy source to produce synthetic fertilisers

The replacement of 15% of **synthetic nitrogen fertilisers** with digestate could save today around **2 bcm of natural gas**

Digestate is an enabler of carbon sequestration

9,3 Mt of Total Organic Carbon, 2022

More **stable organic carbon**, particularly **recalcitrant to biodegradation**

- > High potential for carbon sequestration
- Leads to humus and structure formation in the soil and increases its fertility, functionality, microbial activity, aeration, and water storage capacity

Carbon sequestration potential of digestate

	% of remaining TOC after 1,5 year
Solid fraction of digestate	86%
Digestate 1	73%
Digestate 2	56%
Cattle manure	58%
Maize straw	43%

Reuland, G.; Sleutel, S.; Li, H.; Dekker, H.; Sigurnjak, I.; Meers, E. Quantifying CO₂ Emissions and Carbon Sequestration from Digestate-Amended Soil Using Natural ¹³C Abundance as a Tracer. Agronomy 2023, 13, 2501.

→ The application of (solid fraction) digestate on soil is both a **sustainable soil management** and a **carbon farming practice**

Contribution to food, feed, energy and fertiliser autonomy
Waste management
Local circularity
Income diversification
Decarbonisation tool

Tackle emissions from biogases

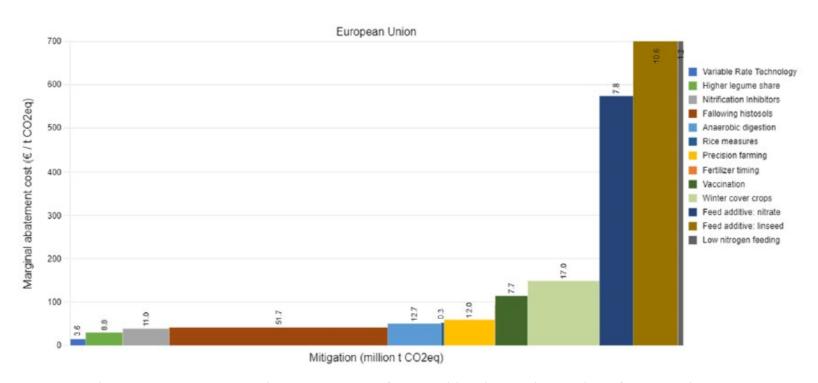
Address the root source of nitrate pollution, regardless of the nitrogen source, in the **Nitrates Directive**, and finance equipment to reduce emissions via the **Common Agricultural Policy**.

Promote the application of digestate

Recognise digestate as a sustainable soil management practice under the **Soil Monitoring Law** and a carbon farming practice under the **Carbon Removals and Carbon Farming Certification Framework**.

Acknowledge the role of anaerobic digestion in reducing GHG emissions

Recognise and credit appropriately emissions reductions from AD and the use of digestate.


Support the development of anaerobic digestion in rural areas

Finance installations, equipment and good agronomic practices (i.e. sequential crops) via the **Common Agricultural Policy**.

Cutting GHG emissions on the farm: the cost-effective impact of anaerobic digestion

Ranking of various technological emissions mitigation options

2nd most promising measure in terms of total emission abatement, among those with relatively low costs

Perez Dominguez, I., et al. *Economic assessment of GHG mitigation policy options for EU agriculture*. EUR 30164 EN. Publications Office of the European Union, Luxembourg, 2020.

THANK YOU!

Lucile Sever, sever@europeanbiogas.eu

Re-thinking our economy. Making the energy transition happen.

www.europeanbiogas.eu

MEBINAR

Dig Deep!

EBA Statistical Report 2024 unveiled: key market trends from the biogas and biomethane industries in Europe

Register now!

Supported by

4 DECEMBER 2024 10h-11h15 AM

