Livestock farming and GHG emissions reductions in Ireland

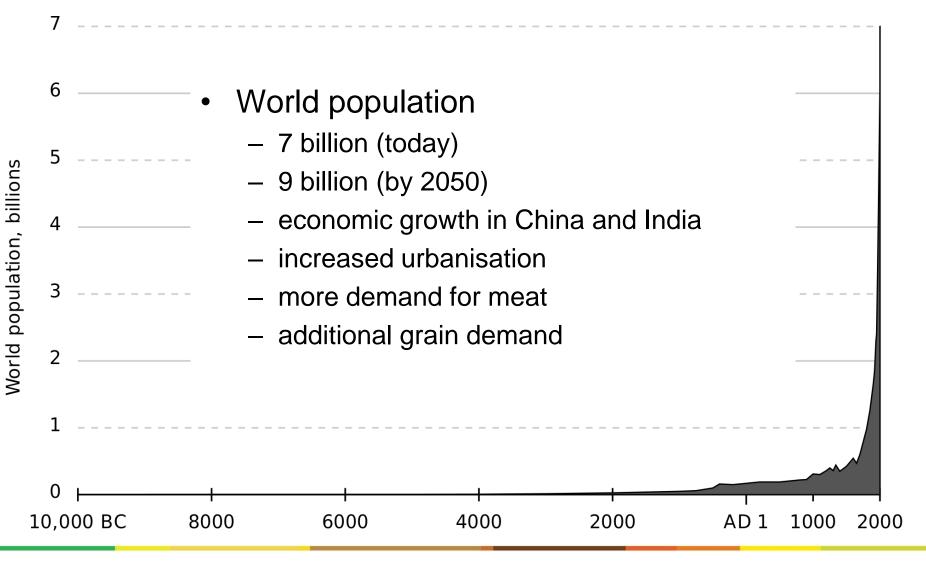
Trevor Donnellan Economist Teagasc trevor.donnellan@teagasc.ie

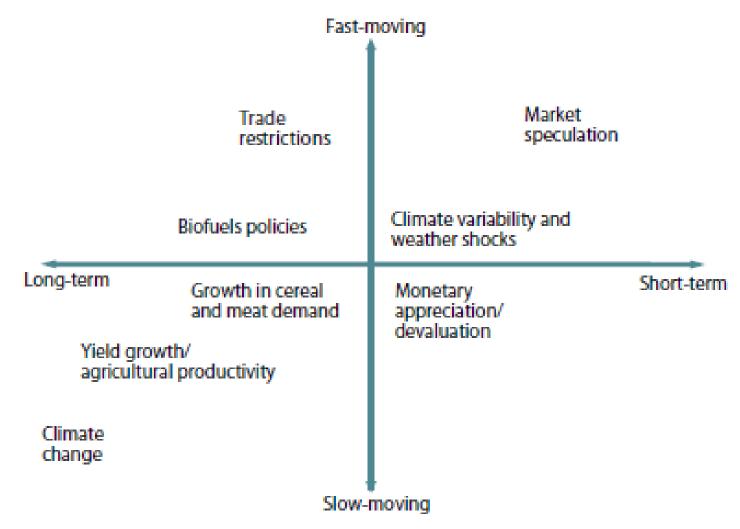
Content

- GHG emissions from Agriculture in EU
 - With focus on Ireland
- Mitigation Strategies
- Mitigation Measurement
 - Developing MAC Curves for agricultural GHG abatement
 IPCC vs LCA
- Lessons for incentivisation of abatement in agriculture
- Complementary Strategies
 - Addressing Food waste
- Conclusion

50 Years of Food Production

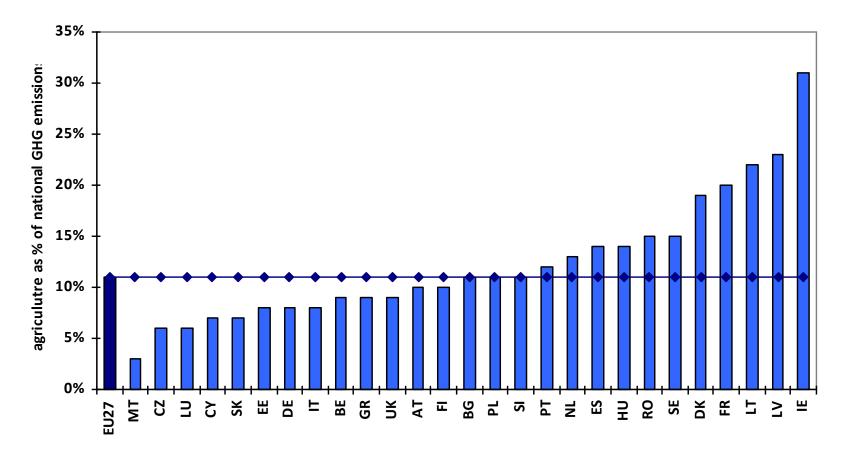
Post World War II


- Food rationed farmers urged to produce more
- Investment in agricultural research
- Strong government support for agriculture
- By 1980s
 - Dramatic progress in food production
 - Milk lakes and grain mountains in EU
 - Caps on production in some sectors
- 1990s
 - Disengagement from agriculture (sunset industry label)
- Today
 - Demographic pressures, competition from biofuels, environmental constraints, climate shocks, low stock levels, price volatility



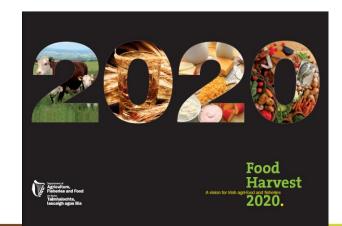
The Demographic Challenge

eagasc


Wider Challenges for Agriculture

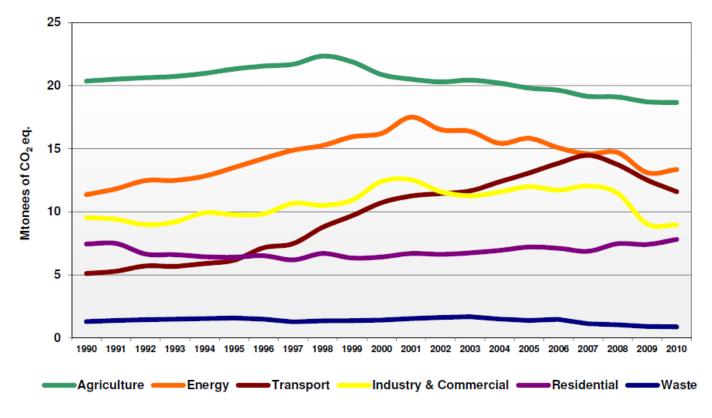
Source: Looking ahead at World Food and Agriculture Perspectives to 2050

Proportion of GHG emissions from agriculture in EU Member States in 2010



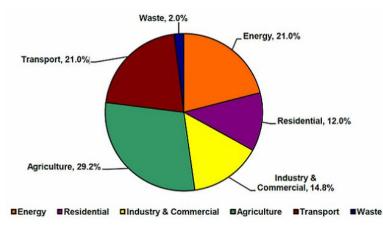
Source: European Environment Agency, Greenhouse Gas Data Viewer

EU Emission Reduction Commitments


- EU has committed itself to GHG reductions to be achieved by 2020
 - Individual emissions targets for each EU Member State
- Irish GHG reduction target of 20%
 - Agriculture 43% of non-ETS emissions in Ireland
 - Desire to increase agricultural production in Ireland
 - Exploit removal of EU milk quota
 - Ireland 90% grassland
 - Ruminant agriculture dominates

Trends in Irish GHG Emissions by IPCC Sector

Trends over time


Source: EPA, 2012 www.epa.ie/downloads/pubs/air/airemissions/GHG_1990-2010_Provisional_2012.pdf

Irish Agriculture and GHG Emissions

- Highly export focused
 - making contribution to food security
- Largely based on bovine livestock
 - milk and beef exports dominate
- But sector at farm level generates:
 - 30% of Ireland's GHG emissions
- National GHG emissions
 - must be cut by 20% by 2020 (relative to 2005)

Future GHG Emissions and Irish Agriculture

- Ambitious growth targets to 2020
 - Food Harvest 2020
 - milk, beef, sheep & pig meat production
- More production will imply more emissions
 - Unless emissions can be decoupled from production
 - This means reducing substantially the emissions per unit of product produced

Adoption of mitigation strategies is constrained by several factors

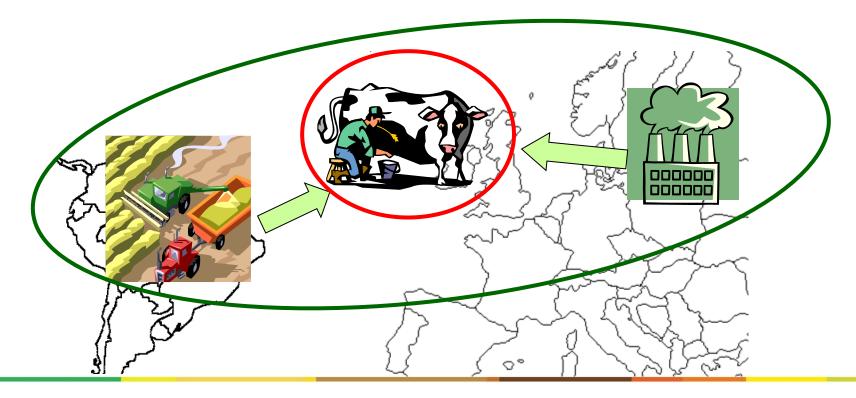
- Biophysical environment (technical potential)
 - Manure cannot be applied to all soils at the start of the growing season
- Cost (economic justification)
 - Measures which cost too much make no sense
- A Marginal Abatement Cost (MAC) curve can be developed to reflect these constraints
 - Measures the cost and abatement potential associated with each measure
 - Based on national research on mitigation measures

Different Metrics

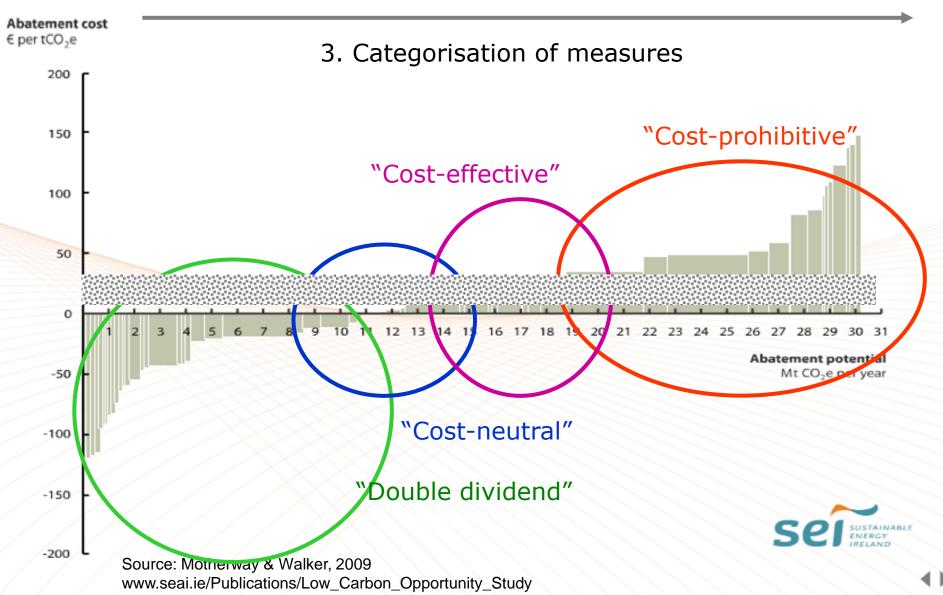
- GHG emissions measured in multiple ways
- IPCC approach
 - sectoral basis (farm level only)
 - measured in aggregate
 - confined to territorial boundary
 - narrow definition

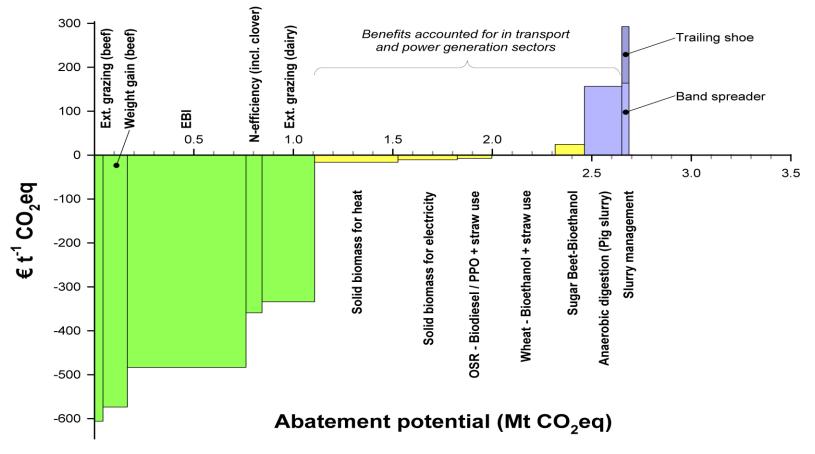
LCA approach

- multi sectoral basis (from farm to fork)
- measured per unit of output
- no territorial boundary
- wide definition
- Different approaches creates different incentives to address emissions


Intergovernmental Panel on Climate Change (IPCC)

IPCC vs LCA Approach


- Life Cycle Assessment (LCA): "real abatement potential"
- Inventory methodology (IPCC): "accountable potential"


1. Order of magnitude

2. Ranking of measures

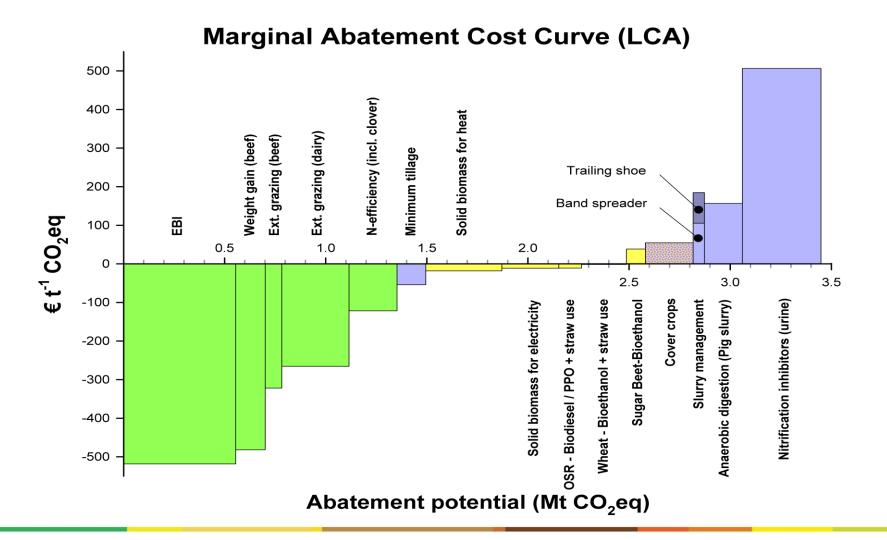
Results IPCC Approach for Irish Agriculture

Marginal Abatement Cost Curve (IPCC)

IPCC MACC for Irish Agriculture

- Technically reduce emissions by 2.7Mt CO2eq
- Most with zero or negative cost measures
 - 2.3Mt CO2eq of abatement under the IPCC method would be achieved at zero or negative cost

Cost Negative Measures


 Greatest potential in mitigation measures that increase productivity, (increasing genetic merit for dairy and beef cattle)

Cost Neutral Measures

- Land use change measures such as bioenergy crops
- Cost Prohibitive Measures
 - Technology measures
- **Problem:** abatement due to land use change measures such as oilseed rape are not attributed to agriculture

Results LCA Approach for Irish Agriculture

LCA MACC for Irish Agriculture

- Technically reduce emissions by 3.4Mt CO2eq
- LCA technical abatement potential 28% greater than that identified under the IPCC approach
 - Approx 2.5 Mt CO2 Eq of abatement under the LCA method would be achieved at zero or negative cost

Cost Negative Measures

associated with approaches which increase farm efficiency

Cost Neutral Measures

Land use change measures

Cost Prohibitive Measures

- New technologies in general (apart from minimum till)

IPCC MACC for Irish Agriculture

MACC curve

- Total realistic abatement potential by 2020: c. 2.5 Mt CO₂eq
- But volume accounted for in inventories is just 1.1 Mt CO₂eq
- Cost rankings of strategies:
 - efficiency < land use change < technology
- Requires intensive knowledge transfer programme

Further reductions would require:

- Change in accountancy arrangements (forestry, biofuels)
- Future measures, subject to ongoing research

The need to monitor incentivisation

- IPCC method underestimates abatement potential for agriculture by 50% relative to LCA method
 - IPCC approach attributes emissions reductions to other sectors or to other countries (Agri sector is not credited for its efforts)
- IPCC accounting reduces incentive for farmers to adopt particular abatement measures
 - especially in case of bioenergy (credit goes to the energy user)
- Further reductions from agriculture may require improved farm incentivisation
 - change in the way emissions reductions are credited to particular economic sectors
 - via domestic offsetting or consumption based GHG accounting

Other Approaches: Can We Reduce Food Losses and Food Waste?

A reduction in food losses

food which spoils before it reaches the consumer, which is an issue predominantly for the developing world

A reduction in food waste

 food which consumers in the developed world buy and subsequently throw away, will need to be reduced

Reducing food losses

requires investment in education, technology and infrastructure in the developing world

Change in consumers' attitudes

- Reducing the amount of food wasted by consumers in the developed world

Food is relatively cheap

 For many in the developed world, so at present there is little economic incentive for many consumers to address their food waste

Long Term Solutions

Reprioritise Agri-food research

- Boost yields, increase tolerance to stress, animal vaccines
- Enhance food shelf life and educate consumers to reduce waste

Enhance Educational Programme for Farmers

- Need to maximise take up of viable food production technologies
- Long time lag in taking technology from lab to farm

• Technologies such as GMOs?

- Hostile public opinion in EU
- Can we afford to ignore this technology any longer?
- Will Europe be left behind by Rest of World?
- Or is staying GMO free a viable point of difference for EU food

• Examine balance between environment and food production

- Do we already have the right balance? That's a political question

Thank You

Emission reduction is not an insurmountable challenge

Look at how food is produced in the Developed World

- use technology (GM?) to make agriculture resilient to climate change
- manage water resources, use precision technologies for irrigation, farming practices which save water and drought tolerant crop varieties
- Look at how food is produced in the Developing World
 - existing technologies for greater food production not fully utilised
 - infrastructural, logistical and marketing challenges to be overcome
 - tailor global knowledge of agricultural science to farming in local regions
- Ensure production is used by final consumer
- Challenge for science & society in 21st century is twofold
 - More food must be produced
 - but in a way that limits the impact on the environment
- In Short We need a Green Revolution of a different kind

Measures to Reduce Emissions

Measures included in analysis:

- Accelerated gains in the genetic merit of cows (as measured by the Economic Breeding Index)
- Higher daily weight gain in beef cattle
- Extended grazing season
- Manure management
- Other gains in nitrogen efficiency (incl. use of clover)
- Use of nitrification inhibitors
- Minimum tillage techniques
- Use of cover crops
- Bio-fuel/bioenergy crops
- Anaerobic digestion of pig slurry

