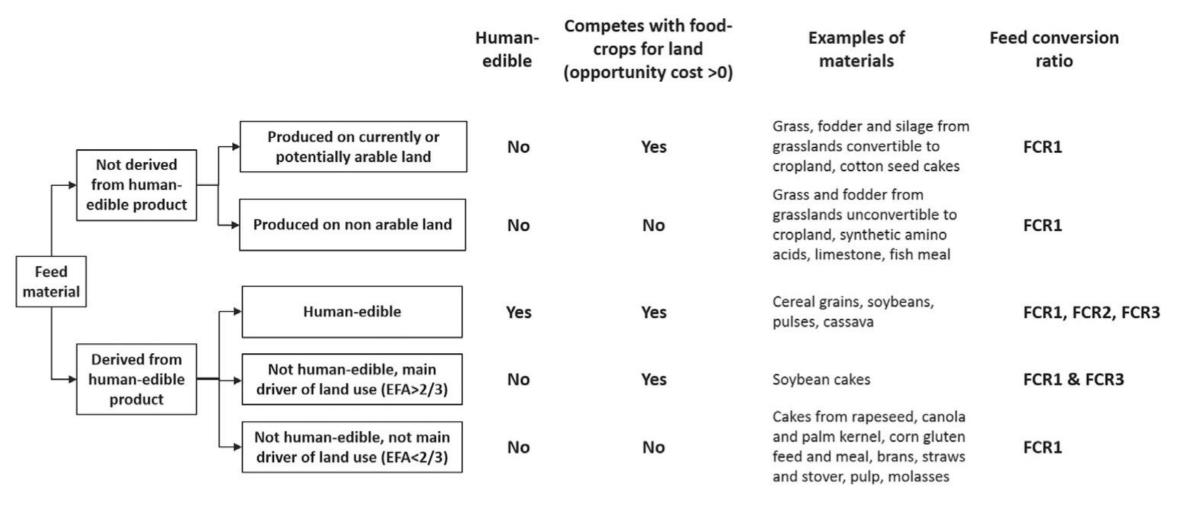

## Adjusting feed conversion ratio methodologies

considering the added value of animals to valorise non-consumable fractions of plant products and biomass from marginal lands

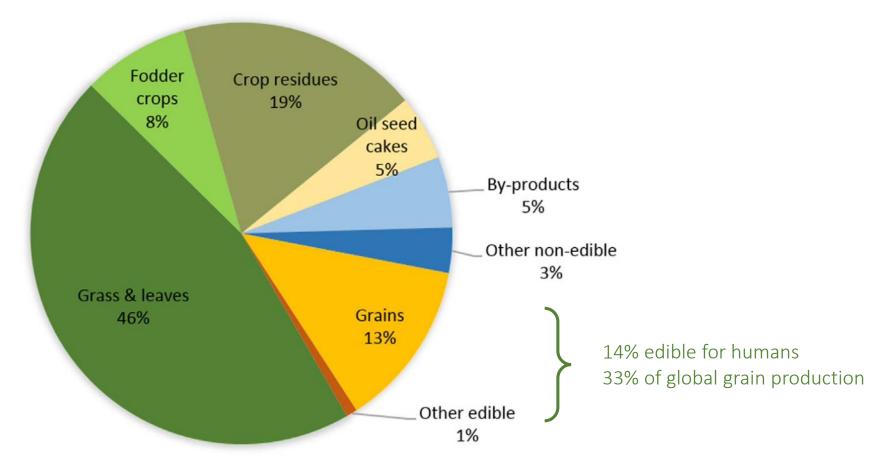


Why should we be interested in feed conversion ratios?


What feed classification do we need?



## Feed/food competition: what needs to be considered? What are the implications?


- Demand for animal source food will continue to grow
- Animal feed rations contain products that humans can eat
- Feed may be produced on land suitable for food production
- Efficiency in converting feed into human-edible products varies between systems
- □ Lack of global database of livestock feed
- ☐ Existing figures hide diversity of production systems (e.g. total consumption of grain by monogastrics vs efficiency in transforming feed)
- We need a classification of feed material that reflects their diversity
- ☐ We need a precise description of the role of livestock in feed utilisation

### How can we classify the types of feed consumed by livestock?



### The global livestock feed intake

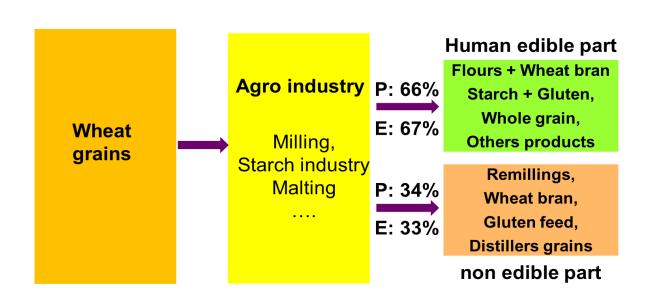
#### 6.0 BILLION TONES DRY MATTER



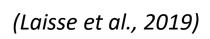
Fodder crops: grain and legume silage, fodder beets

Crop residues: straws and stover, sugar cane tops, banana stems

By-products: brans, corn gluten meal and feed, molasses, beetroot pulp and spent

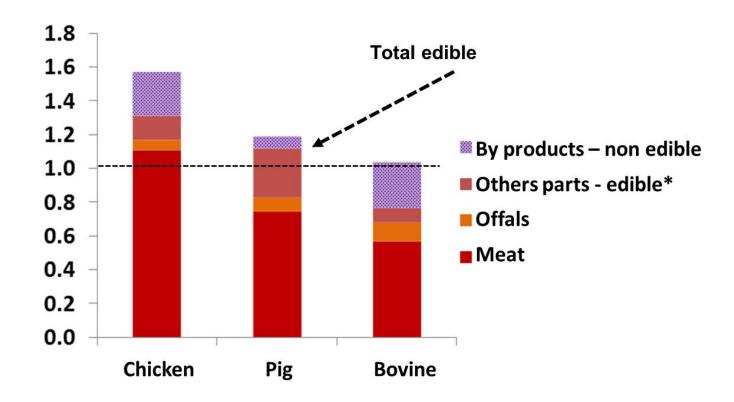

breweries, distilleries, biofuel grains

Other non-edible: second grade cereals, swill, fish meal, synthetic amino acids, lime

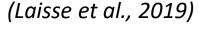

Other edible: cassava pellets, beans and soy beans, rapeseed and soy oil

### Proportion of edible biomass used as animal feed

#### Non edible fraction of Feedstuffs




| Non-edible fraction      |       |  |  |  |
|--------------------------|-------|--|--|--|
| Grass, herbs (50% AA)    | 100 % |  |  |  |
| Wheat                    | 34%   |  |  |  |
| Maize grain              | 85 %  |  |  |  |
| Soya                     | 40 %  |  |  |  |
| Coproducts, former foods | 100%  |  |  |  |
| Former foods             | 100%  |  |  |  |






## Assessment of the share of animal feeds available for human consumption



\* Other edible parts: other offals + rind (pork) + skin (chicken) + gelatine Non edible proteins: fertilisers, petfood, energy, cosmetics...





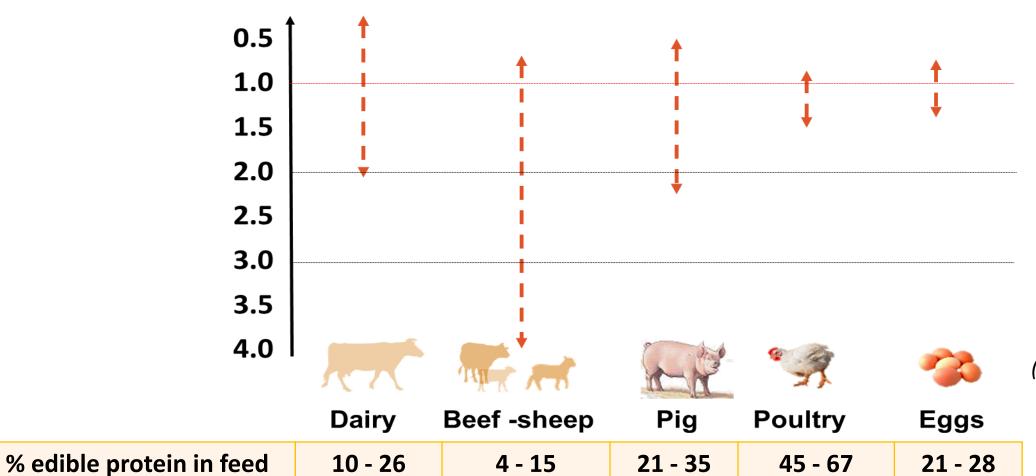
How do efficiencies vary between species and systems depending on the feed considered?



### Global feed conversion ratios

|              | Protein | FCR 1                | FCR 2                       | Meat<br>FCR 2            | FCR 3                           | Protein<br>FCR 2                 |
|--------------|---------|----------------------|-----------------------------|--------------------------|---------------------------------|----------------------------------|
|              | Mt/year | Kg DM<br>/kg protein | Kg edible DM<br>/kg protein | Kg edible DM<br>/kg meat | Kg compete<br>DM /kg<br>protein | Kg edible protein<br>/kg protein |
| Ruminants    | 36,355  | 133                  | 6                           | 2.8                      | 6.7                             | 0.6                              |
| Monogastrics | 38,246  | 30                   | 16                          | 3.2                      | 20.3                            | 2.0                              |
| All          | 74,601  | 80                   | 12                          | 3.1                      | 13.7                            | 1.3                              |

- Efficiency in converting feed material varies a lot depending on which feeds are considered.
- Ruminants need a lot of dry matter to produce 1 kg of protein but very little edible plant protein compared to monogastrics.


## Feed conversion ratio by production systems

|                          | Protein            | FCR 1                | FCR 2                       | Meat<br>FCR 2            | FCR 3                        | Protein<br>FCR 2                 |
|--------------------------|--------------------|----------------------|-----------------------------|--------------------------|------------------------------|----------------------------------|
|                          | % global livestock | Kg DM<br>/kg protein | Kg edible DM<br>/kg protein | Kg edible DM<br>/kg meat | Kg compete DM<br>/kg protein | Kg edible protein<br>/kg protein |
| Grazing cattle non OECD  | 8%                 | 195                  | 1.6                         | 0.9                      | 1.9                          | 0.2                              |
| Mixed cattle non OECD    | 18%                | 171                  | 4.8                         | 3.1                      | 5.6                          | 0.5                              |
| Beef feedlots OECD       | 2%                 | 62                   | 44                          | 9.4                      | 45.4                         | 4.1                              |
| Industrial pigs non OECD | 7%                 | 29                   | 20                          | 4                        | 24.1                         | 4.4                              |
| Industrial broilers OECD | 11%                | 26                   | 18.6                        | 3.5                      | 24.7                         | 5.2                              |

• There are also strong variations between systems in the same species

## Feed conversion ratio: the French production systems

Kg of edible plant protein / kg of edible animal protein



(Laisse et al., 2019)



## Feed conversion ratio for beef systems

#### Kg of edible plant protein / kg of animal protein

|                                   | Intensive<br>(concentrate) | Grassland based or rangeland |
|-----------------------------------|----------------------------|------------------------------|
| Wilkinson (2011) : UK             | 3.5                        | 1.1                          |
| Wiedeman et al (2015) : Australia | 3.3                        | 0.3                          |

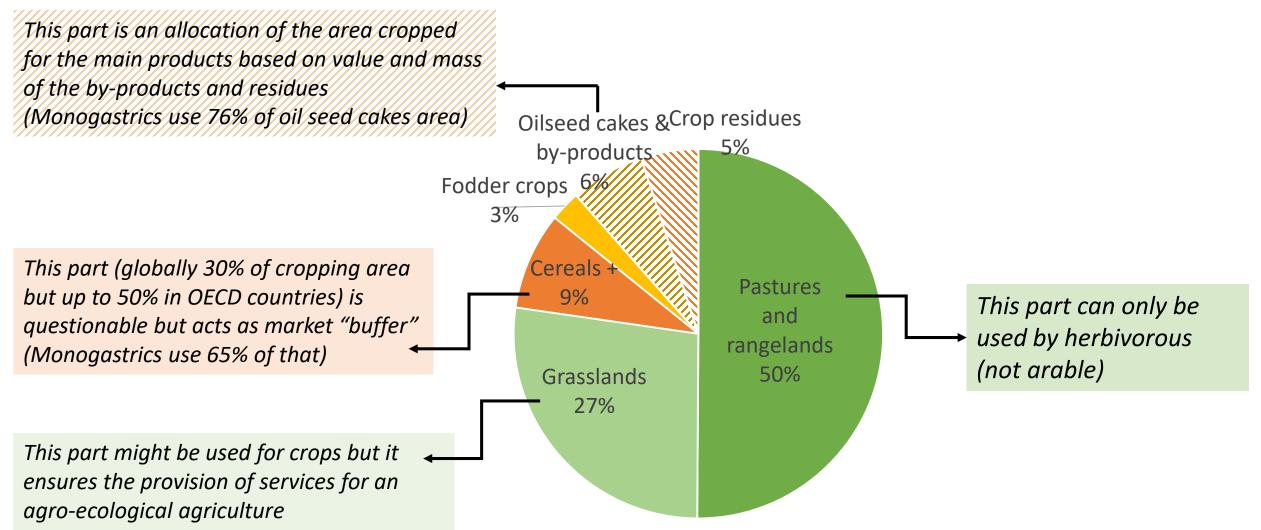
## Feed conversion ratio: source of variation among species

|                              | milk | Beef, sheep | pig | poultry |
|------------------------------|------|-------------|-----|---------|
| No edible biomass as feed    | ++   | +++         | +   | -       |
| Animal biological efficiency | +    | -           | +   | ++      |
| Edible part in product       | +++  | -           | ++  | +       |



Specify the method: the calculation of non-consumable fractions

## A method not yet harmonized: consumable fraction in plant


|               | Laisse et al (2018)<br>France | Ertl et al (2016)<br>Austria | Wilkinson (2011)<br>UK |
|---------------|-------------------------------|------------------------------|------------------------|
| Maize silage  | 15                            | 19 - 45                      | 0                      |
| Wheat         | 66 - 76                       | 60 - 100                     | 80                     |
| Maize grain   | 15 - 30                       | 90                           | -                      |
| Wheat bran    | 90                            | 0 - 20                       | 20                     |
| Pea           | 74 - 88                       | 70 - 90                      | 80                     |
| Rapeseed meal | 0-55                          | 30 - 87                      | 20                     |
| Soybean meal  | 60 - 90                       | 50 - 92                      | 80                     |

Another dimension of feed-food competition:

**Land Use** 



## Livestock use 2.5 billions ha of land (Total ag land = 4.8 billion ha)

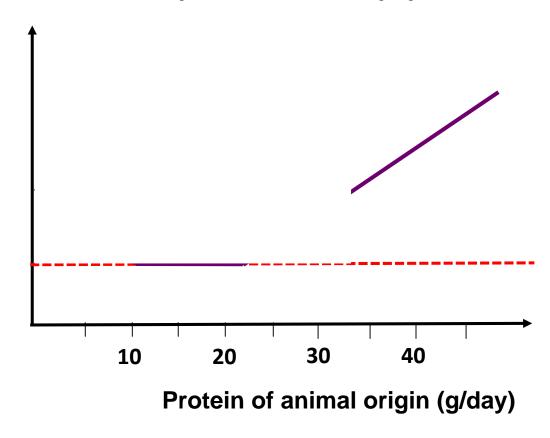


Ten Years For Agroecology **IDDRI** 

## Land use: Edible protein yield per ha of arable land

Protein yield per ha

|                            | Pig, Poultry             | Egg       | Milk      | <b>Bovine meat</b> |
|----------------------------|--------------------------|-----------|-----------|--------------------|
| De Vries and De Boer, 2010 | 180 - 220                | 210 - 280 | 200 - 250 | 30 - 80            |
| Ermgassen et al., 2016     | 300 (DE, DK, FR, SP, PO) |           |           |                    |
| Hennessy and Moran, 2014   |                          |           | 350       |                    |




Livestock upgrade the nutritional value of protein of plant origin

# Coupling livestock and crops for a more efficient agriculture

- Complementarity between livestock and crops to maximize food production / ha
  - Valorisation of co-products
  - Valorisation of non-usable land for crop production
- The adoption of such regimes would lead to changes in eating habits that are difficult to accept and may not adequately cover the nutritional needs
- Nutritional recommendations (PNNS):
   60 g protein /day including 30 g of protein of animal origin

#### Relative area required to feed the population



(Adapted from Van Kernebeck et al., 2014 et De Boeer et al., 2018)

## Food from marginal Land? Ruminants can do!!!

- Ruminants contribute to food security by valorizing grazing marginal land that are not able to produce plant products
- In Europe, permanent grasslands and rangelands cover 73 M ha (40% EU AA)
- At world level, 360 million cattle and 600 million small ruminants provide 25% of world animal product from marginal land

Sere and Steinfeld, 1996









Take home messages



# Feed/food competition? or the role of livestock in the circular bio-economy

- Calculating net FCR instead of gross FCR does change our vision
- Livestock use 1/3 of global cereal production (> 50% in OECD countries)
   and 40% of global arable land
- However, livestock are more efficient than often claimed (86% of intake in DM not currently edible for humans at global level, 50 to 90% in the EU)
- Ruminants are even more efficient and use primarily cellulosis
   (contributors to net global protein supply, especially grazing systems)
- Ruminants produce food from marginal lands that cannot be cropped (1.3 billion ha globally and 40% perm grasslands in EU). Temporary grassland produce environmental services

## Way forward

- Allocation of land but what opportunity cost?
- Attributable vs consequential and scenario analysis (including changes in diets, land-use etc.)
- Limitation of the feed vs food competition: prevent further expansion of arable land dedicated to feed production
  - Use of dual purpose crops: food first then feed
  - Improvement of grassland use efficiency
  - Improvement of FCR
  - Encourage the use of non-edible materials