

A European Public-Private Partnership

2nd one-day symposium

of the Animal Task Force & the EAAP Commission on Livestock Farming Systems

GHG emissions mitigation in practice - at farm gate : feed systems, increased soil carbon sequestration and energy production

> PhD Anne-Catherine Dalcq Young farmer – CEJA vice-president

Permanent grasslands

\Rightarrow Respect of optimal livestock level for no overgrazing	l Droughta
Rotatiional grazing	! Droughts
Dairy cow : 2,5 UGB/ha (spring), variable in function of rains in the summer / Beef cow : 4 UGB/ha	Irrigation?
	Trees?

- Carbon sequestration
- Production of rich forage (crude protein in the spring (20% protein, 100 g DVE), sugars with the sun), with lower milk congestion unit (=1,11) (< corn silage (=1,25) and grass silage (= 1,33))

Lucern

- No nitrogen fertilisation

Production even if droughts!

- Higher content of crude protein in lucern (20% protein, 70 DVE)

Temporary grasslands

- = mix of varieties of grasses and leguminous plants> 3 years
- Carbon sequestration from > 3 years
- Lower nitrogen fertilisation (80 N <<<< 140 N + 80 N + 50 N)
- Higher content of crude protein in the forage
- → mean % protein for all harvests : 19%, 80 DVE
- \rightarrow DVE 1st cut, 2022 = 93 vs. classical forage (only R-G) = 61

! Droughts But more resistant than a rye-grass

Irrigation? Trees?

Forage intercrops

- = mix of cereals (triticale & oat) and leguminous plants (pea, vetch)
 Sowing in September →
- No nitrogen loss from the previous crop (wheat)
- Low nitrogen fertilisation (80 N)
- Production of forage : less rich than grasses and leguminous
- \rightarrow Ok for young animals and beef cows

Harvest in the Spring

No tillage practices

After 3-4 old temporary grasslands or forage intercrops for the soil preparation for sowing of corn silage Less carbon release

Not possible in each parcel Causes :

- Drought

Solutions :

- Earlier harvest of forage intercrops
- Early first passage of the machine on all the parcels
- ... New things need trial-and-error and importance of the climate!

Home-made concentrates

= mix of cereals (triticale, oat) & one leguminous plant (pea)

Sowing in September \rightarrow Harvest in July-August

Rolling

→ Home-made concentrates (goal : 16% protein) for young animals

- Low nitrogen fertilisation
- Less protein importation -
- → Example of 2 parcels

0 N	80 N
6,6 t/ha, 17% protein (1,12 t protein/ha)	8 t, 14,5% protein (1,16 protein/ha)
→ 6,6 t concentrate	 → 8,8 t concentrate (with 10% soja) + 2,2t with 80 N = 1777€/8,8t Soja = 384€ for 800kg ==> 982€/t extra

Manure

BULLETIN D'ANALYSE D'AMENDEMENT ORGANIQUE. (BA N° A008/0418)	BULLETIN D'A	NALYSE D'AMEND	DEMENT ORGANIQUE	(BA Nº AO08/0418)
--	--------------	----------------	------------------	-------------------

ARE MARKA

	Date d'échantillonnage:	31/07/2008	Références de l'échantillon:	Lisier - vaches laitières	Nº d'analyse: AO08/0418	12H
ж.	Date de réception:	31/07/2008	Catégorie:	Lisier de bovins		
	Date d'envoi:	12/08/2008		Stéphane Veragten		1
	Dates d'analyses: Du 3	1/07/2008 à 12	2/08/2008	E	tat de l'échantillon à la réception: Bon	

Déterminations		sur matière	fraîche	sur matière	sèche	Statistiques **	(Moyenn
Matière sèche		5,5	%			9,69	%
Cendres totales		1,79	%	32,67	%	29,99	%
Cendres insolubles		0,55	%	10,04	%	10,65	%
Chlorure		0,07	%	1,32	%	1,17	%
Matière organique tota	ale	37	kg/T	67,33	%	70,01	%
Azote ammoniacal	N-NH4+	1,38	kg/T	2,52	%	2,18	%
Azote organique	N	1,48	kg/T	2,69	%	2,3 9	6
Azote total	N	2,86	kg/T	5,21	%	4,36 %	

Liquid manure

→ 2,86 UN whose 1,38 directly accessible

Allows complete fertilisation of forage, partial fertilisation of crops

Date de réception: 3/06/2021 Catég Date d'envoi: 7/07/2021 Echan		Catégorie: Fumier de bovi Echantillonneur: Arnaud Toeger		le bovins		N° d'analyse: AO211009
ates d'analyses: Du 3/0	06/2021 à 7/0	17/2021	-	Etat	de l'écha	ntillon à la réception: Bon
Déterminations		sur matière	fraîche	sur matière s	èche	Statistiques ** (Mo
Aatière sèche		18,8	%			22,68 %
endres totales		5.68	%	30,16 9	6	32.04 %
enures totales						

Chlorure		0,38	%	2,01	%	10	%
Matière organique tota	ale	132	kg/T	69,84	%	67,96	%
Azote ammoniacal	N-NH4+	0,010	kg/T	0,005	%	0,14	%
Azote total	N	6,45	kg/T	3,42	%	2,51	%

Solid manure

→ 6,45 UN

whose 0,01 directly accessible

Progressive availability of the N (on 3 years) Depends on the quality of the soil \rightarrow the « power of mineralisation »

Biomethanisation (a project)

Decrease of N2O and CH4 release

Complete fertilisation of crops possible

1 ton solid manure →0,36 ton liquid digestate N of the original manure (40-50% mineral) & 191 kWh (value of the energy?)1 ton liquid manure →0,58 ton liquid digestate& 51 kWh

1 ton of manure + corn silage (max 20%) + green organic waste \rightarrow 900 kg liquid digestate 6 UN (mostly available) + 5000 MWh

= Solution for small and middle-size farms & share of work and responsabilities

Thank you!

3.15

Questions?

Contact : annecatherine.dalcq@gmail.com