INRA

Agroecological efficiency and transition at different scales of ruminant production systems

H. Nguyen-Ba, P. Veysset, A. Ferlay

Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 1213 Herbivores, 63122 Saint-Genès-Champanelle, France <u>hieu.nguyen-ba@inrae.fr</u>

> Introduction

Does efficiency per se mean sustainability?

 $\uparrow \text{ Efficiency} = \frac{\uparrow \text{ Outputs}}{\text{Inputs}} \text{ or } \uparrow \text{ Efficiency} = \frac{\text{Outputs}}{\downarrow \text{ Inputs}}$

↑ Outputs • Is achieved in high-input intensive systems (Capper et al., 2011; Capper and Cady, 2020)

- Despite using a large amount of inputs, they produce a much higher level of outputs
- Consequences (Garnett et al., 2015):
 - Feed-food competition
 - Land and water contamination
 - Biodiversity losses, animal welfare concerns and rural unemployment, etc.

↓ Inputs • Low-input systems make use of natural processes and inputs

- Agroecology aims to (Dumont et al., 2013; Bonaudo et al., 2014):
 - Reduce dependencies on synthetic and fossil resources
 - Bring more added values to farmers, society and nature
- Ruminants play an essential role in agroecological context → judged beyond food production and environmental emissions

INRA

Agroecological efficiency at different scales of ruminant production systems 28-08-2023 / EAAP-WAAP / H. Nguyen-Ba, P. Veysset, A. Ferlay Outputs

Inputs

Efficiency =

> Introduction

Gains of efficiency at lower scales do not always retain when evaluated at higher scales (Faverdin et al., 2022)

Objectives:

- 1. Conceptualize a new holistic criteria for efficiency in agroecological ruminant production systems (AE efficiency)
- 2. Literature evidences for impacts of scale changes on efficiency:
 - Possible gains/losses of efficiency due to scale changes (animal \rightarrow herd \rightarrow system)

INRAe

> Material and methods

Literature review

- 1. Conceptualize a new AE efficiency :
 - 5 principles for the design of agroecological livestock production systems
 - Discussions with INRAE experts
 - Literature review

- 2. Impacts of scale changes on efficiency of ruminant production systems: systematic review
 - Selection criteria for papers:
 - i. Peer-reviewed and written in English or French
 - ii. Simultaneously study at least two scales
 - iii. Impacts of improving efficiency at one scale on efficiency gains/losses at another scale
 - Search string was run on Web of Sciences (May $16^{th} 2023) \rightarrow 86$ articles
 - Screening titles and abstracts → **15 articles** (mostly dairy cattle)

INRAe

Results and discussion

Overall AE efficiency criteria of ruminant production systems

- AE efficiency = multi-criterial efficiency = \int (production, environment, economy, work)
 - 1. Ψ Use of intermediate consumptions (purchased goods and services)
 - 2. Ψ Pollution and losses by closing nutrient cycle of the system
 - 3. Ψ Feed-food competition

4. $\Lambda \frac{\text{Added value}}{\text{Gross value of production}}$

- 5. Ψ Overburdened workload
- To improve AE efficiency:

•
$$\wedge$$
 Efficiency = $\frac{Outputs}{\sqrt{Inputs}}$ or \wedge Efficiency = $\frac{\sqrt{Outputs}}{\sqrt{\sqrt{Inputs}}}$

- Animal health, biodiversity and interactions between components of the system are key levers
- Synergies/Trade-offs between 4 dimensions

INRA@

Results and discussion

Perimeters of each scale within ruminant production systems

> Results and discussion

Impacts of scale changes on overall efficiency of the system

- NUE varies much more at the system scale than at animal scale:
 - France: animal scale (23-29%) vs. system scale (23-53%) (Godinot et al., 2022)
 - Global: animal scale (13-36%) vs. system scale (8-64%) (Klein et al., 2017)

- NUE and PUE of dairy and beef systems (Bai et al., 2013; Oenema and Oenema, 2022):
 - Herd scale: animal production level, feed quality
 - System scale: recycle of nutrient flows, animal-plant coupling
- GHG emission of a German dairy farm after 1 year of conversion into organic (Gross et al., 2022):
 - Animal scale: ^{12%} enteric CH₄ intensity (kg CO₂/kg ECM)
 - System scale: \oint 9% GHG intensity (kg CO₂/kg ECM) due to \oint emissions from on-farm (17%) and off-farm (29%) feed production

INRAØ

Agroecological efficiency at different scales of ruminant production systems 28-08-2023 / EAAP-WAAP / H. Nguyen-Ba, P. Veysset, A. Ferlay NUE = Nitrogen Use Efficiency GHG = Greenhouse Gas

Results and discussion

Impacts of scale changes on overall efficiency of the system

- Poorly understood interactions between system's components → trade-offs between scales:
 - Increasing maize silage in cow diet at the expense of grass (Vellinga and Holving, 2011; Van Middelaar et al., 2013):
 - Animal scale: \checkmark GHG emissions (enteric CH₄)
 - System scale: ↑ GHG emissions because loss of soil Carbon stock due to land use change (grassland → maize land)
 - Increasing milk production per cow (Zehetmeier et al., 2012; Vellinga and Vries, 2018; Lehmann et al., 2019; Faverdin et al., 2022)
 - Animal scale: Ψ Enteric CH₄ intensity
 - System scale:
 - Ψ Beef meat produced per dairy farm
 - If demand for beef unchanged \rightarrow if compensated by suckler systems $\rightarrow \uparrow$ enteric CH₄ intensity

> Take home message

- Efficiency in agroecological ruminant production systems:
 - Relies on reduction of external inputs and interactions between components
 - Multicriterial Efficiency = \int (production, environment, economy, work)
- Gains of efficiency at animal scale do not always retain at the whole-system scale:
 - Only impacts on production and environment were found
- Future researches are needed for:
 - Validation of AE efficiency in practices
 - Impacts of scale changes on different dimensions of AE efficiency in ruminant production systems

> Acknowledgements

- Isabelle Ortigues-Marty (INRAE UMR Herbivores)
- Gonzalo Cantalapiedra (INRAE UMR Herbivores)
- Valerie Monteils (Vet Agro Sup)
- Jean-François Hocquette (INRAE UMR Herbivores)
- Marie-Pierre Ellies-Oury (Bordeaux Sciences Agro)
- Claire Mosnier (INRAE UMR Herbivores)
- Olivier Martin (INRAE UMR MoSAR)

- Bertrand Dumont (INRAE UMR Herbivores)
- Marc Benoît (INRAE UMR Herbivores)
- Benoît Dedieu (INRAE ACT departement)
- Agnes Girard (INRAE LPGP)

Thank you for your attention!