
A European Public-Private Partnership

3rd one-day symposium

of the Animal Task Force & the EAAP Commission on Livestock Farming Systems: Sustainable livestock farming – defining metrics and rationalising trade-offs?

Methods to assess the sustainability of livestock systems: challenges and opportunities

Evelien de Olde

True Price Cappuccino

How sustainable do you drink your coffee?

What if we include all effects on people and nature?

2

- Costs True Price ■ Cappuccino with cow milk € 2.00 € 2.28
- Cappuccino with oat milk € 2.00 € 2.11

Content

- Sustainability challenges in livestock farming
- Measuring sustainability of livestock systems
 - Current application
 - Assessment methods
- Challenges and ways forward

Sustainability challenges in livestock farming

The environmental impacts of food and agriculture

	26% of greenhouse gas emissions come from food											
Greenhouse gas emissions	Food 13.7 billion tonnes CO _a eq											
	50% of the world's habitable land is u	of the world's habitable land is used for agriculture										
Land use	Agriculture 51 million km²	Forests, shrub, urban area, freshwat 51 million km²										
	70% of global freshwater withdrawals are used for agriculture											
Freshwater withdrawals	Agriculture 70% of freshwater withdrawals		Industry (19%) Iouseholds (11%)									
	78% of global ocean and freshwater	ollution										
Eutrophication	Agriculture 78% of global eutrophication	Other sources										

Science

Nitrogen crisis from jam-packed livestock operations has 'paralyzed' Dutch economy

ological damage from manure fumes triggers calls for drastic change to agriculture

AC MIN - BY CAN STORETAD

00VID-19

Hundreds of farmers rally in Madrid to demand fairer prices

Protesters are calling on the Spanish government to take action to address the crisis, which they say is threatening the future of the agriculture sector

Del agro a tu casa suben:

Tomate v pollo, el 400% Patata y naranja, el 800%.

French farmers protest against low earnings, deplore high suicide

ΠΠ

PARIS (Reuters) - French farmers hu from nooses in trees in Paris on Thu say is suffocating the agricultural ind week been in talks with retail giants

euters | Last Updated:March 05, 2021

THE THE THE THE !!

GHG

.

- Water .
- Air ٠
- Land ٠
- Biodiversity ٠

Farm income

.

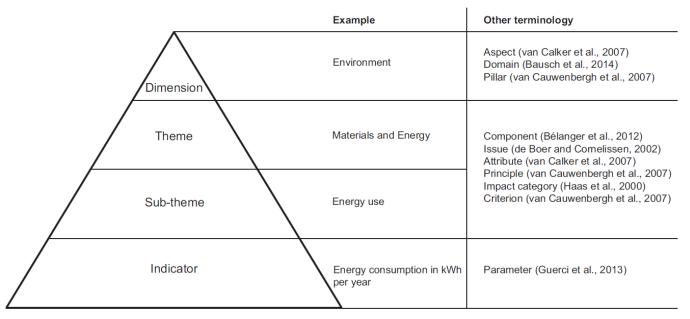
٠

٠

.

social

economic


environment

- Rural livelihood
- Employment
 - Succession

- Labour conditions ٠
- Quality of life ٠
- Animal welfare ٠
- Public health ٠
- Landscape quality ٠

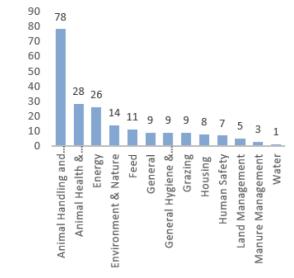
Measuring sustainability of livestock systems

... from challenges, to assessment, towards sustainable development

(de Olde et al., 2016)

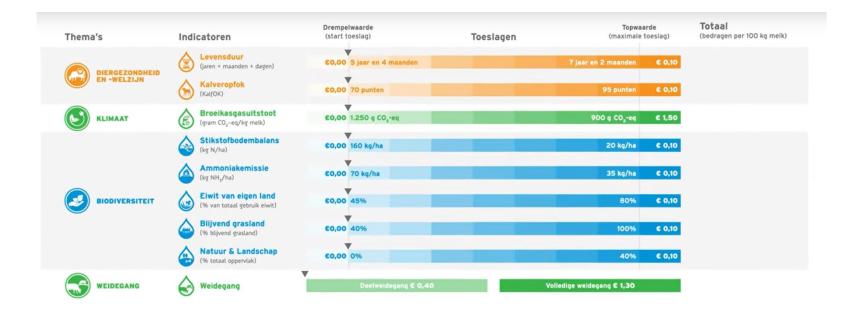
Measuring sustainability of livestock systems

Current application


Market – example Better Life label

- NGO-led Dutch Society for the Protection of Animals
- 208 criteria (including recommended)
- From animal welfare focused to broader sustainability
- Voluntary

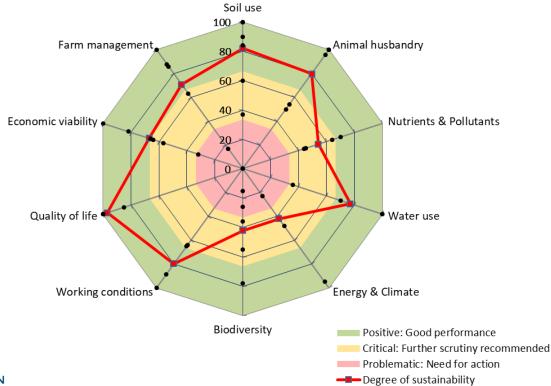
Market – sustainability certification


- Recent studies in crop, dairy and poultry
- Widely used -> influence
- Livestock hardly studied
- Highly variable
 - Themes and indicators (type and number)
 - Scoring and weighting systems (recommended vs required)
 - Level of ambition (beyond legal / quality control)
 - Organisation (retailer, NGO, industry)
- Practice-based indicators

Business – example FrieslandCampina

Foqus Planet – Sustainable Development (proposal Oct. 2022)

Policy – example Province of Drenthe


- Reward for performance on 5 themes
- Max € 2500 per year

Theme	Indicator	Reference value
Phosphate	P2O5 surplus per ha	< 0 P2O5/ha
Nitrogen	N surplus per ha	< 125 kg N/ha Reduction > 25 kg/ha (of previous year)
Ammonia	NH₃ per ha	< 50 kg NH3 Reduction > 5 kg/ha (of previous year)
Climate	CO2 eq / kg milk	< 1350 g CO2 eq / kg milk Reduction > 100 g CO2 eq / kg milk
Grazing	Days grazing	> 120 days, 720 h

Farmers – example RISE 2.0

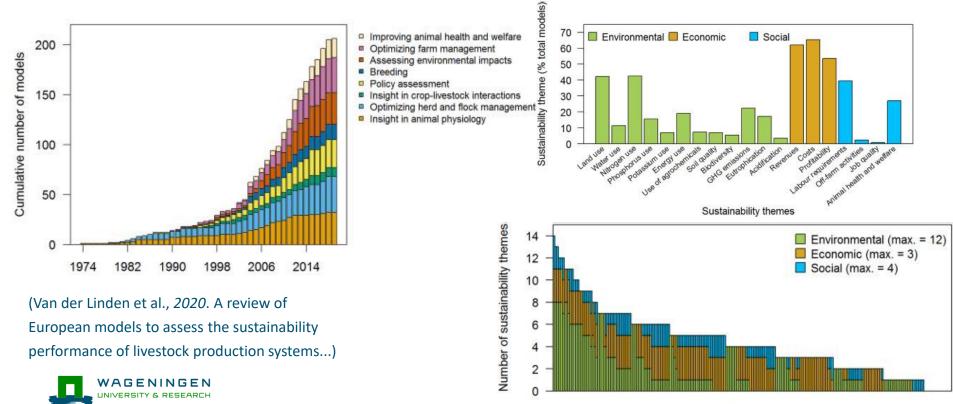
Types of sustainability assessment

1. Ex-ante assessment of sustainability

E.g. optimization models, bioeconomic models, data from farm surveys or databases, for research or policy advice

2. Ex-post assessment of sustainability

E.g. farm assessment tools, indicator sets, data from farm interview (quantitative and qualitative), for farm advice or research, different levels of stakeholder involvement


3. Life cycle assessment

E.g. environmental impact (GWP, eutrophication, acidification, land, water and energy use) per kg product or protein

1. Ex-ante assessment of sustainability

215 European models (mainly dairy, beef, pigs and sheep)

2. Ex-post assessment of sustainability

- 48 indicator-based tools
 - A continuous proliferation of tools...
 - Limited attention to implementation
- In-depth comparison of four tools (SAFA, RISE, PG, IDEA)
 - Large number of indicators (116 185)
 - Context specificity -> relevance
 - Different indicators, even for similar themes
 - Weights and aggregation

(De Olde et al., 2016. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice)

3. Life Cycle Assessment

Review of 570 studies ~38,000 farms of 40 products

						sions	10 th		Land (m ² y			2	10 th			id. SO ₂ eo	q)		troph 2043-0			ty. W eq)	ater
A 100g prote	100g protein	n	D	25]	50 75		Mean	0	100	200	300	Pc	Mean	0	75	150	0	75	150	0	50	100
	Beef (beef herd)					• →	20	50					42	164	-		->	<u> </u>		-			_
	Lamb & Mutton	757	1	•			12	20	1001				30	185					1				-
	Beef (dairy herd)	490		•			9.1	17					7.3	22			-			+	1		
		(D	5.	/	10 15			0	-5	10	15			0	75	150	0	75	150	0	50	10
Crus	taceans (farmed)	1.0k				-	5.4	18					0.4	2.0			-			-	1		
	Cheese	1.9k				• -	5.1	11				->	4.4	41									-
	Pig Meat	116					4.6	7.6		1		-+	4.8	11		l.	-						
	Fish (farmed)	612	- 3		1		2.5	6.0		1			0.4	3.7	1					+	8		
	Poultry Meat	326	1		(2.4	5.7					3.8	7.1	i i		L	101				1.	
	Eggs	100	1		8		2.6	4.2					4.0	5.7									
	Tofu	354					1.0	2.0	100				1.1	2.2	1			1					
	Groundnuts	100	H				0.6	1.2	118	6			1.8	3.5				1					í.
	Other Pulses	115	11			10 th pctl.	0.5	0.8		100		\rightarrow	4.6	7.3									
	Peas	438				ruminant meat	0.3	0.4		e i			1.2	3.4	1								
	Nuts	199					-2.2	2 0.3	1			-+	2.7	7.9									-
	Grains	23k	11	7			1.0	2.7					1.7	4.6									
В	1 liter		0	2		4 6			0	3	6	9			0	15	30	0	10	20	0	50	10
(T))	Milk	1.8k	8	100			1.7	3.2				->	1.1	8.9		1	+						
	Soymilk	354	ΞH	(⁻			0.6	1.0	н				0.3	0.7	1			1			1		

(Poore & Nemecek, 2018. Reducing food's environmental impacts through producers and consumers)

17

ZERO NET EMISSIONS BY 2050

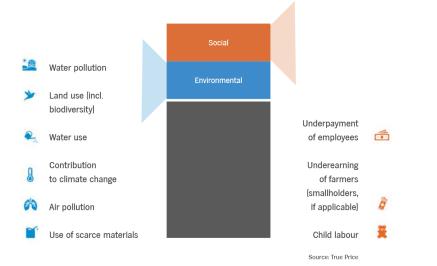
Nestlé is accelerating its actions

3b. True Cost Accounting (TCA)

 Accounting for social and environmental (negative and/or positive) externalities

- COP 26 and UN Food Systems Summit
 - "a game changing solution for food system transformation"

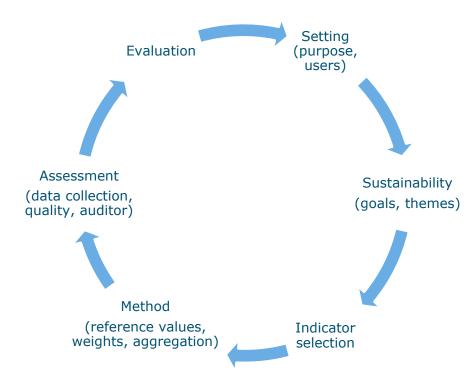
- > 35 initiatives and methods
 - Indicators, monetization and aggregation



3b. True Cost Accounting (TCA)

True Price pilot AH

- Environmental and social external costs
- 15% paid TP
- Donation to Rainforest Alliance



(AH, 2023)

20

Sustainability assessments

Process of many decisions that all affect the outcome

Sustainability assessments - challenges

- Process of many decisions that all affect the outcome
- Continuous proliferation of models, tools and indicators
- Tendency to focus on aspects that are easy to quantify
- Divergence in public and private interest and sustainability goals
- Sustainability standards wide reach but unknown impact
- Aggregation risks

Ways forward

- Sustainability as continuous improvement
- Recognize that sustainability assessments are value-based
- Harmonization of terminology, indicator sets and methods while allowing for context specificity
- Allow different indicators over time (practice and performance)
- Towards food system governance (aligning public and private)
- Embrace complexity

Thanks!

evelien.deolde@wur.nl

Thanks to colleagues at APS and WEcR

Special thanks to Eddie Bokkers, Imke de Boer, Aart van der Linden, Keeley McGarr-O'Brien, Tomke Smit

