

## Session 07 "Mixed crop/livestock systems – do they deliver more resilient food systems" 30 August 2021



# Does integration promote sustainability in organic multi-species livestock farm?

*Marc Benoit,* L. Steinmetz, D. Ulukan, G. Bernes, C. Brock, A. De La Foye, B. Dumont, M. Grillot, M.A. Magne, T. Meischner, M. Moerman, L. Monteiro, B. Oehen, D. Parsons, R. Primi, L. Shanz, P. Veysset, C. Winckler and G. Martin

INRAE UMR-Herbivores, Clermont-Ferrand, France





### **Background and challenges**

- Agrobiodiversity is a core principle of agro-ecology and organic farming
- Not only crop-livestock integration but also between livestock species integration (or type of production)
- Mix-Enable: a Core-Organic project

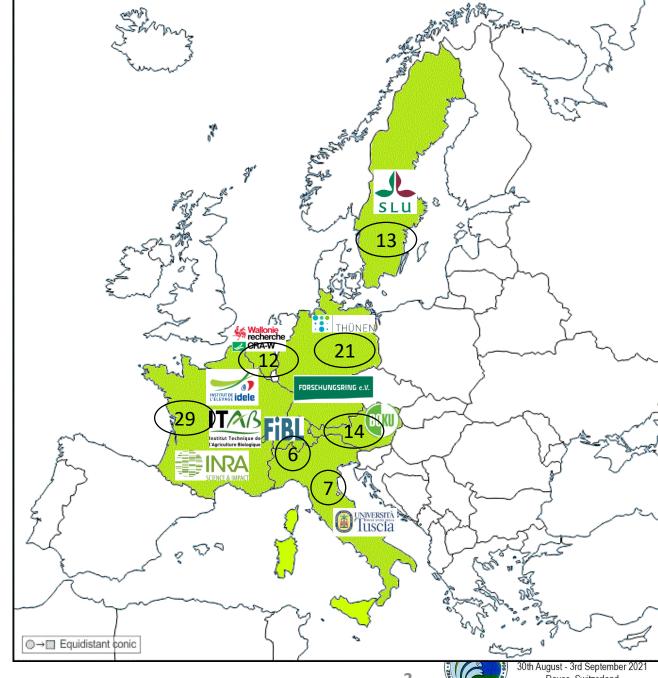
- Assessing the benefits of combining several animal species
- 3 approaches: Farm monitoring, experimental devices, participatory research
- All farms are in organic production





### Mix-enable








9 partners from 7 different countries

WP2 (monitoring)

WP3 (indicators and analysis) based on 102 farms





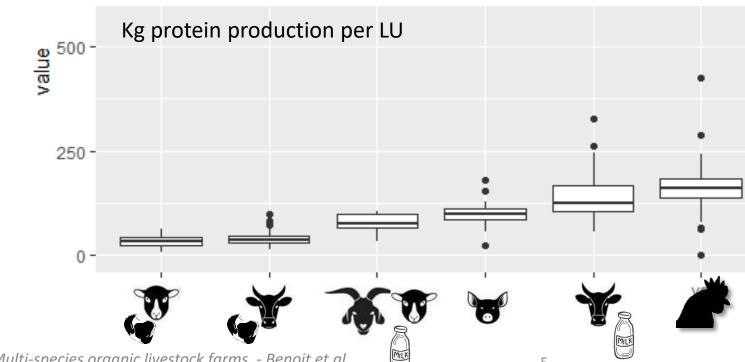
### Material and method

#### Data monitored

- Farm structure (area, workers, type of animals and number etc.)
- Production (kg, Protein, MJ, €, type of marketing)
- Inputs (Feed and fertilization)
- Work organization (Who, how, when?)
- Global analysis with both
  - Agronomical approach (i.e. technical organisation and performance)
  - Type of marketing
  - Work organization and farmers satisfaction
  - Efficiency of the production
- 2 steps
  - Data analysis 
     Main types of farms, their characteristic and performance
  - Search for enterprise combinations (types and thresholds) → Farm Efficiency






### Methodological challenges Multi-species and productions (meat, milk...)

- **Share of each species**  $\rightarrow$  How? New proposal for LU calculation (with net energy from IPCC, for herbivores. See session 67)
- What **efficiency**? → Output/input
  - → Concentrate / Output (from animals)

#### But, productivity (output/LU) depends on species and production

- → Centered-reduced per enterprise: Eff CR
- → Then global indicator

$$Eff_{farm} = \sum_{entr=1}^{n} Eff\_CRentr \cdot _{\%}LU_{entr}$$





# Principal Component Analysis and Agglomerative Hierarchical Clustering PCA – AHC

#### 96 farms

6 countries

2 or more animal enterprises per farm

Ruminants in all farms

Beef cattle and dairy cattle are the more represented

#### 38 variables

n= 14 Farm structure (area, size, production types & importance)

n= 3 Sales type and other activities

n=6 Performance (productivity and efficiency)

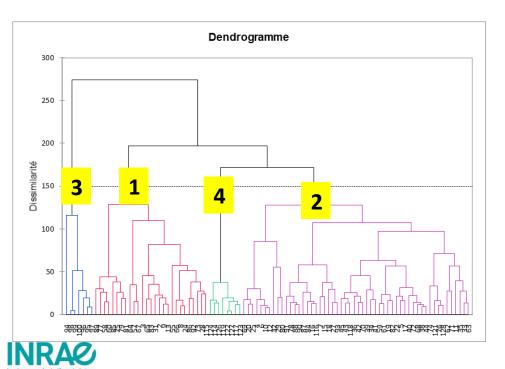
n=15 Social aspects (satisfaction, knowledge, farmers origin etc.)



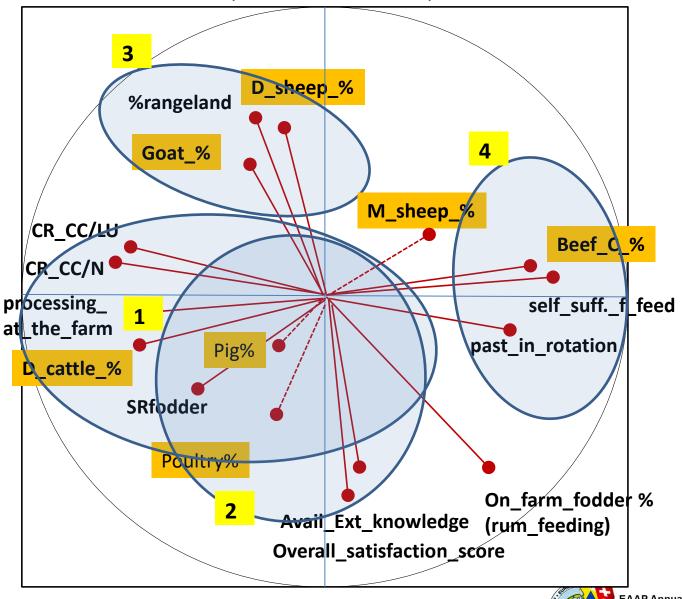


### AHC

#### 4 groups of farms


Number of farms:

**1** 27


**2** 54

3

**4** 8

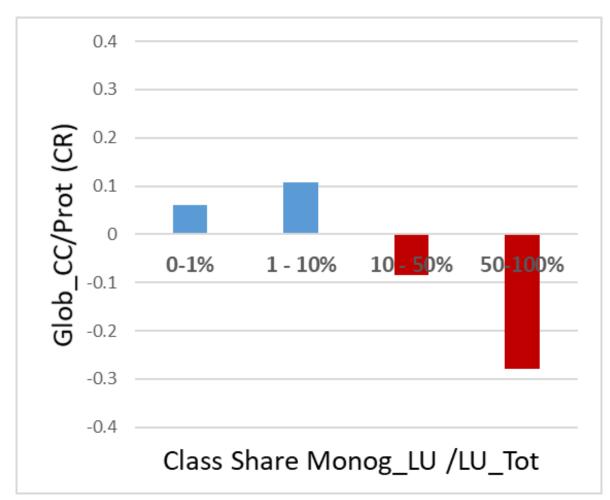






### Main features of the farms (4 groups)

|                         | 1                   | 2                      | 3                    | 4                        |
|-------------------------|---------------------|------------------------|----------------------|--------------------------|
| Main (second)           | Dairy Cattle (+pig) | Beef Cattle (+poultry) | Dairy Sheep (+ goat) | Beef Cattle ( + Meat sh) |
| LU                      | 64                  | 101                    | 112                  | 44                       |
| LU/AWU                  | 14                  | 47                     | 18                   | 34                       |
| AWU                     | 4.4                 | 2.2                    | 6.1                  | 1.3                      |
| Worker Paid/Unpaid      | <b>36%</b> - 7%     | 18% - 12%              | 46% - 31%            | 14% - 0%                 |
| Process/Short ch (€)    | <b>82%</b> - 64%    | 39% - 44%              | <b>71%</b> - 82%     | 0% - 53%                 |
| % farm fodder in R.feed | 81%                 | 84%                    | 46%                  | 98%                      |
| Conversion to OF        | 1995                | 2001                   | 2011                 | 2004                     |
| farmer_1_off_roots      | 56%                 | 17%                    | 0%                   | 12%                      |
| Eff: CC / Prod (CR)     | - 0.14              | + 0.04                 | + 0.49               | - 0.62                   |

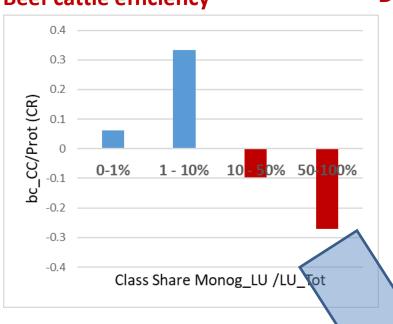





### What combination for a good efficiency?

- ➤ CC/Prot (CR): seen as non-efficiency indic.→ Negative is good
- ➤ Beef cattle and Sheep (meat): -0.62

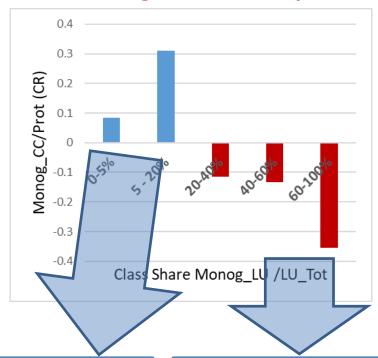
  See poster no 36.21 from Vazeille et al
- ➤ Role of monogastrics ?
- → The more monogastric, the best global efficiency
- $\rightarrow$  Why / How?








#### Relation between share of LU-Monogastric and animal efficiency






#### **Dairy efficiency**



#### **Monogastric efficiency**



#### Hyp:

Significant and positive impact of feed importation (monogastric) on pasture fertility and on ruminants feed self-suffic.

#### Hyp:

More importance on short channel marketing?
€: marketing > tech.efficiency

#### Hyp:

Large enterprises are more rationalised /efficient





### Take-home messages

- Big-Small ruminants association (beef cattle / meat sheep)
  - Interesting complementarity? (feeding, parasitism management)
  - Low added value on meat (compared to conventional F) → profitability depends to a large extent on technical performance
- Ruminants-monogastrics association

  - Hypothesis
    - Significant fertility transfer (Steinmetz et al 2021)
    - When lower share of Monogastrics → Technical management is less important for farmers and more investment is made on processing / marketing (to be checked)
- Dairy sheep and goat
  - Very frequent in Italy, with
    - Low agronomic potential (rangelands)
    - 82% short channel marketing



Low Animal Efficiency (output/input)





### Conclusion

- A wide range of data (technical, marketing, work), on 100 farms, 6 countries, 6 types of production. Huge data verification work. Lack of overall economic results
- Studying complex (diversified) farming systems leads to several methodological issues (calculation of LUs, comparison of performance, input allocation,...)
- Interesting first results
- Additional analyses should be carried out, e.g. effects of the level of integration between enterprises and the role of work organization on farm efficiency and farmers' satisfaction
- There is a huge diversity in the sample (farm size, type of sales, type of combinations etc.)  $\rightarrow$  for more refined analyses, it would be necessary to re-sample within-combination





### Thank you for your attention

marc-p.benoit@inrae.fr



We acknowledge the financial support for the MIX-ENABLE project provided by transnational funding bodies, being partners of the H2020 ERA-Net project, CORE Organic Cofund, and the cofund from the European Commission



