

A European Public-Private Platform

J.L Peyraud INRA

Perspective of Livestock production 2050

Food

Meat: +70% (465 Mt)

Milk: +60% (1045 Mt)

Eggs: +60% (110 Mt)

Societal Challenges Livestock Production: ATF vision

Resource Efficiency

Healthy livestock and People

Responsible Livestock Production

ATF vision: Livestock, the key in a Circular bio-economy

Bio energy
Bio based products
Enzymes,....
Cosmetics

Livestock provides food of high nutritional value

- Digestible Indispensable Amino Acid Score (FAO, 2007)
 - Content, Proportion and profile of IAA, Digestiblity
 - Importance of children (brain functions)
 Seniors (sarcopeny)

	DIAAS index	
Milk	139	
Beef	131	
Soya	102	
Wheat	65	
Peas	82	

- Other micro nutrients
 - Iron (heminic): 17% of young women (18-29 years old) have iron deficiency (France)
 - Ca, Vit B12
 - Fatty acids: rumenic acid, omega-3

Livestock contributes to food security

- Too simplistic evaluation of livestock efficiency
 - Confusion between human edible and non edible protein utilisation
 - Ruminant are inefficient or efficient?

	Total	PC
Pig	3	2,6
Poultry	2,2	2,1
Bovine int- ext	5 - 9	3 - 1
Dairy	3,2	0,7

Adapted from Wilkinson (2011)

- Animal efficiency should be (re)evaluated
 - Efficiency per kg of edible Prot and per ha
 - LCA analysis allocations
 - Margins of progress: Use of alternative feeds, innovative processed by-products and more efficient livestock

Livestock contributes to a more efficient agriculture

- Using of marginal land not able to produce plant products for human
 - Grasslands and rangelands: 73 millions ha (40% European AA)
 - Productivity vs provision of services
- Livestock production is required for an efficient use of land
 - What are the responses curves in various territories/countries?
 - Improving synergies considering local contexts

Short term N supply

Ammoniacal N (fertilizer)

Livestock regulates the ecological cycles

Reduction of the use of mineral fertilizers

- 1.8 Mt N vs 2.1 Mt for mineral fertilizers and 310 kt P vs 286 t for mineral fertilizers
- Reduction/ utilisation of gas losses
- DSS for improving use of liquid manure
- Return of Organic Matter to the soil
 - Soil physical properties and soil microbita (specific and functional biodiversity)
 - Speciation C/N/P to favour soil C sequestration
 - Dissemination of antibiotic resistance
 - Innovative organisations (actors)
 - Multi-functionnality of straw
- Role of grassland and legumes
 - Regulation of N, P, C flow
 - Protein and N autonomy

Manure
liquid phase

Poultry
liquid manure

Liquid manure
Bovine, pig

Sqolid manure
poultry
Splid manure
bovine
Compost

Organic N content increases

Potential soil OM enrichment

Livestock contributes to GHG mitigation

Perspective: 30 - 40% reduction

- GHG mitigation options
 - Genotyping low methane production for selection
 - Animal health, husbandry and feed quality
 - Manure management
 - Improving C sequestration soils (4 p 1000)
 - Precision livestock farming
 - Balance between meat and milk production

 Cooperation between FACCE and HDHL is promising to enable a Climate Smart and Sustainable Nutrition Security approach

Livestock provides non-provisionning ecosystem services

- Maintenance of grassland and its services
 - Grassland lifespan and management: C storage, specific and functional biodiversity

	Grassland	Crops
OM (t/ha)	80	40
Invertéebrates (t/ha)	3,5	0,5
Erosion (t OM/ha/y)	0,3	3,6
Pesticides	0	+

- Concept of bundles of services
 - Composition of the bundle of services: variation according to local contexts
 - Synergies and trade off between services
 - Levers that can improve delivery of services
 - Scenario of evolution : farm to food chain and territory

A European Public-Private Platform

Too simplistic evaluation of C and feed vs food competition

Source: Lantmannen Foods

The cconsumption of protein / kg animal food

Summing up LCA's single products in a Linear Model

- Does not account for integration in a global Agro-Ecosystem
- Ignore the use of non edible protein and marginal land
- Does not envisage optimal land use for edible protein production
- Does not consider C storage and others services
- Ignores the effects of the production system
- Ignores the Feed for Food Footprint
- Do not quantify the multiples effects induced by the reduction in livestock production

Research gaps

Resource efficiency

- Assessing the roles and impacts of Livestock
 - Soil sustainability: physical, chemical fertility, functional biodiversity,
 - Evaluation of C footprints of our diets,
 - Contribution of animal production to the protein security,
 - Effects of any reduction in Europe of the consumption of milk and meat products (vs trade) on the availability of biomass and soil and rural vitality
- Improving the roles of livestock and the coupling between livestock and crops
 - Efficient and safe feed chains (cascading approach): maximal use of biomass (food then feed), alternative feeds/forages
 - Robust and efficient animals and herds: trade-off between productive and non productive functions, identification of appropriate phenotypes, new breeding programs
 - Closing the loops: emission factors (allocations), mitigations, maximisation of C storage, manure management (phosphates),
 - Biorefinery of animal by products,

Societal Challenges Livestock Production: ATF vision

Resource Efficiency

Healthy livestock and People

Responsible Livestock Production

Research gaps

Healthy Livestock and people

- Antimicrobial resistance in the concept of "one health"
 - Mechanism of dissemination: reservoir of resistance, transfer within food chains,
 - Prevention: early detection (PLF), robustness, acquisition and stimulation of immunity, role and installation of microbiota, feeding and husbandry practices, local organisation,
 - Alternatives therapies: use of viruses (phages), vaccines development,
- Disease prevention and control
 - New diagnostic tools,
 - Prediction of pathologic emergences and risk assessment, conditions of pathogens transmission,
 - Host-pathogen dialog and reciprocal adaptation: pathogen biology, host defences (inflammatory and immune responses) and interaction, mechanism of infection,
- Animal Welfare
 - Animal based indicators
 - Emotional processes
- Nutritional quality of animal products
 - Comprehension of the role of nutrients and the matrix effect

Societal Challenges Livestock Production: ATF vision

Resource Efficiency

Healthy livestock and People

Responsible Livestock Production

Research gaps

Responsible Livestock production

Responsible farming systems

- Adaptive capacity of farming system: trade-off between efficiency and resilience
- Design and transition toward innovative (multi-performing) systems,
- Impact of innovations on workload and work complexity,
- More value out from grassland

Integration of farm systems into sectors and territories

- The territorial scale of farming systems: evaluation of services, trade-offs and synergies between services
- Benefits and risks of the co-existence of a diversity of systems/ food systems,
- Collective organisation: chairing the risks, adaptive capacities of certified quality systems

Tools to favour innovation

- Evaluation methods: global assessment, common and shared approaches/data,
- Incentives public policies for encouraging more balanced performances,
- Tools and methods for efficient advising of farmers