

Outline

- LFS commission: history and vision
- Sustainability
 - Understandings of sustainability (implications for innovation)
 - Efficiency, what efficiency?
 - Responsible and responsive LFS

1. LFS history

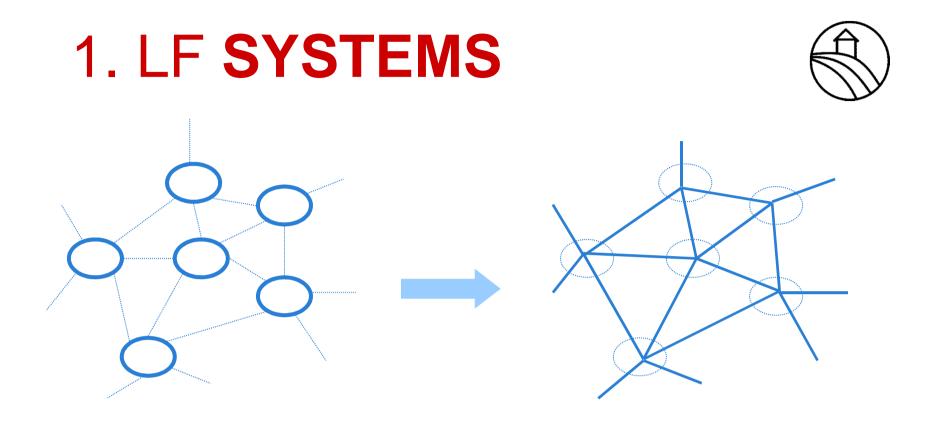
- Youngest Commission at EAAP
- Working Group till 2003
 - Organized every second year the: International Livestock Farming Systems Symposia
 - 6th in Benevento (2003) on Product quality based on local resources and its potential contribution to improved sustainability

1. LFS com. members

- Former presidents
 - Annick Gibon, Fr
 - George Zervas, Gr
- LFS com. members now

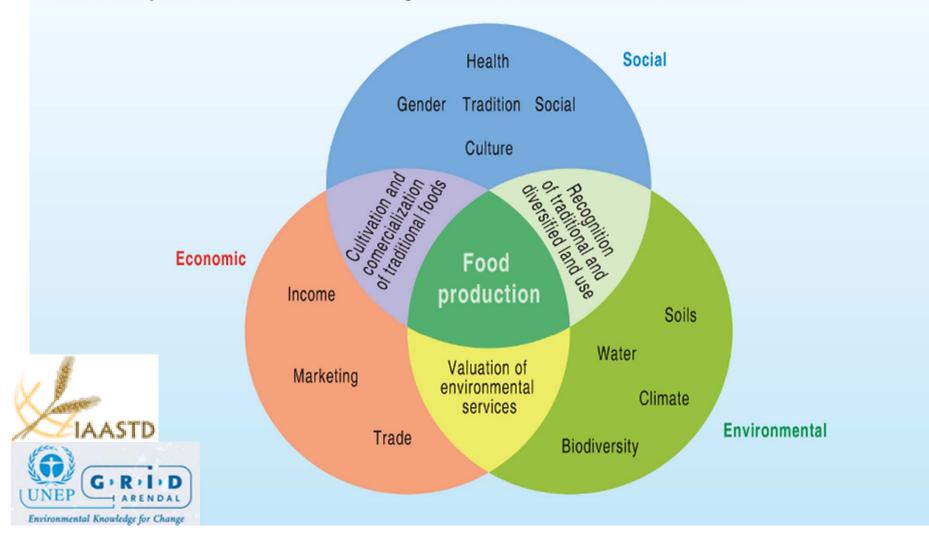
– Alberto Bernués, Sp (President)

- Stéphane Ingrand, Fr (Vice-Presid.)
- Muriel Tichit, Fr (Vice-Presid.)


election 2014

- Karen Eilers, NI (Secretary)
- Monika Zehehetmeier, De (Secretary)

1. LFS topics


2013		Symp.: Sustainable animal production in the tropics and high constraint areas
	es d	Services provided by livestock farming systems: ecological, economic and social dimensions
	Nantes	Robust and resilient livestock farming systems in a changing world
	Ż	LFS innovations for local/rural development
		Cattle production in a changing policy environment in Europe
2012	a	LFS in emerging and developing countries: trends, roles and goals
	slav slav	Labour issues in LFS (gender, lifestyle, workload satisfaction, part-time agriculture, immigration)
	Bratislava	Modelling complexity in LFS to address trade-offs and synergies for efficiency
	2	Symp.: Livestock and climate change: options for mitigation and adaptation
	e L	Life-cycle assessment of livestock production
2011	ang a	Ecological intensification and ecosystem services of LFS
00	Stavanger	Social pillar of sustainability
	St	Challenges of rangeland farming systems (economics, grazing, reproduction, health and welfare)
G	5 U	Opportunities and challenges for grassland-based systems
2010	Crete	Relationships between intensity of production and sustainability of LFS
		Symp.: Environmental impact of animal production
		The impact of competition between food, feed and fuel on livestock industry
б	ona	Local breeds: what future?
2009	Barcelona	Are organic farming systems sustainable?
	Bar	Methods to quantify uncertainty and changing socio-economic environment in livestock farming
		The role of livestock farming in rural development

... from parts to the whole... ... from objects to relationships...

2. Sustainability

The inescapable interconnectedness of agriculture's different roles and functions

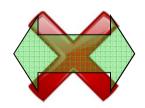
2. Sustainability, what is it?

Knowledge gaps for agricultural sustainability in the UK (Dicks et al, 2013)

- 1. How can we develop a sustainable **animal feed** strategy?
- 2. What are the **trade-offs** between delivering different **ecosystem services** (including biodiversity and crop production)?
- 3. How can **phosphorus** be **recycled** effectively for farming systems?
- 4. How can we develop 'multi-functional' land management options to maximise both agricultural productivity and environmental benefits?
- 5. What is the smallest set of **metrics** to evaluate the sustainability (economic, social and environmental) of agricultural systems and interventions at farm and landscape **scales**?

2. Sustainability, what is it? Indicators of sustainability for sheep farmers and technicians (Ripoll-Bosch et al., 2012)

- 1. Labour profitability (Net Margin per Working Unit)
- 2. Farm **continuity** (15 years, scale)
- 3. Diversification in sources of income (# products)
- 4. Salary level (labour profitability against average salary)
- 5. Feed **self-sufficiency** (on-farm feed/ total feed)


2. Sustainability, what is it?

Importance of indicators

- 46% economics
- 35% social
- 19% environmental

Policy makers' priorities (Env. sustainability)

- Climate change (GHG)
- Pollution
- Water
- Land use change
- Landscape
- Biodiversity

Top 3 per attribute

- 60% economics
- 33% social
- 7% environmental

Farmers' priorities (Env. sustainabilty)

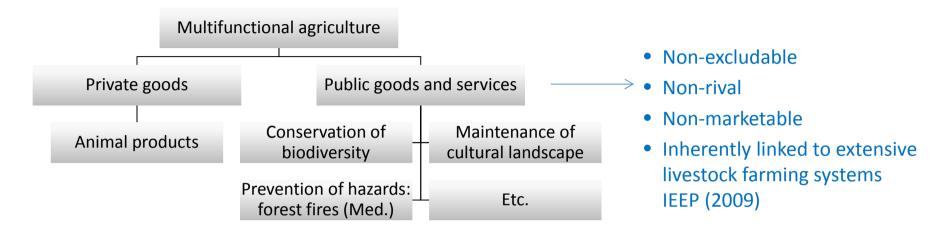
- Maximize grazing
- Energy efficiency
- Use of communals
- Stocking rate
- Local breeds
- Wildlife conflicts

2. Efficiency, what efficiency? Input / Output = Resources / Purpose

Can be measured in many ways:

- Energy use (feed, fuel)
- Economic efficiency (profitability)
- Time efficiency (labour)

2. Efficiency, what inputs?

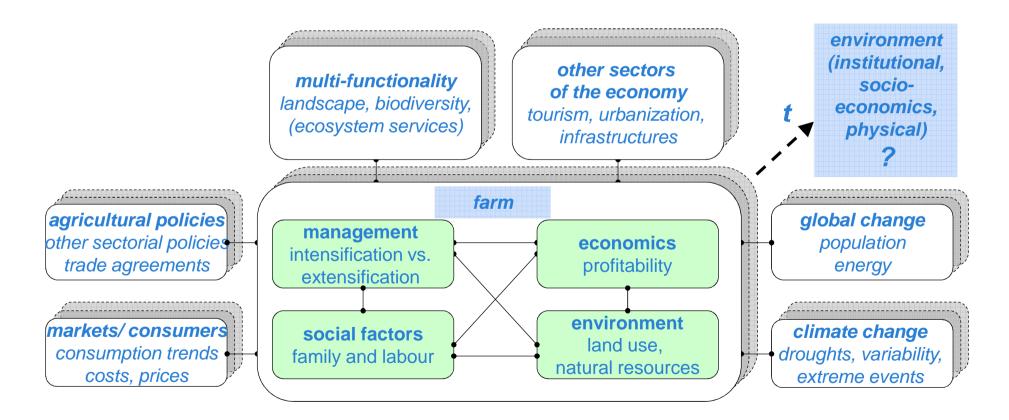

• Feed conversion in UK (Wilkinson, 2011)

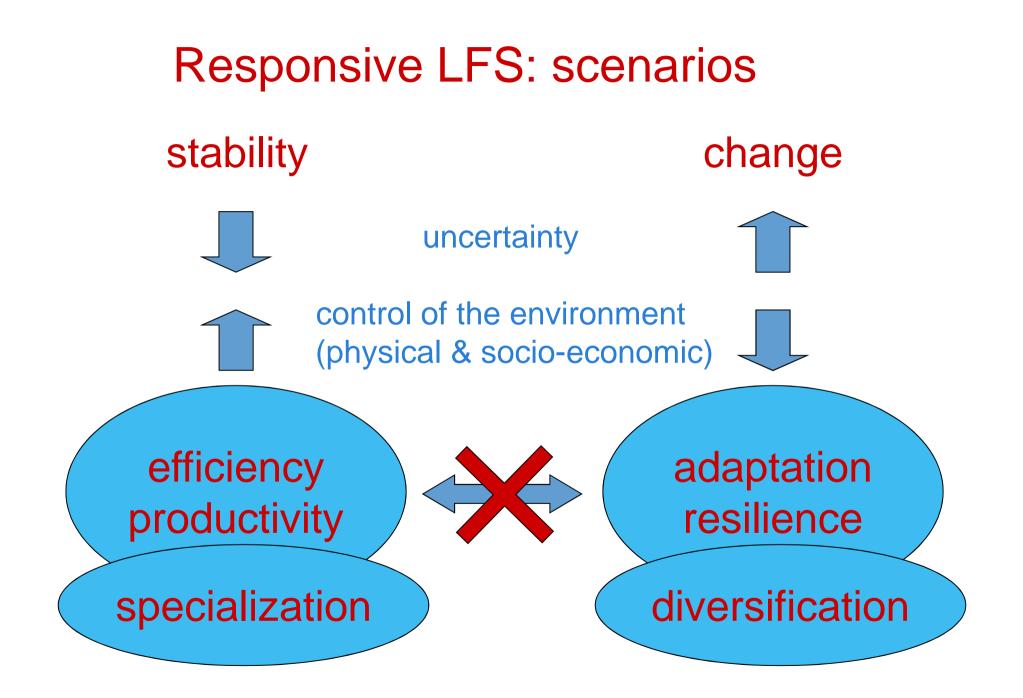
	Total	Edible
	Protein (kg/kg edible protein in animal product)	Protein (kg/kg edible protein in animal product)
Lowland lamb	30.3	1.1
Poultry meat	3.0	2.1

• Energy use in Spanish Agriculture (Carpintero & Naredo, 2006)

	1950-1951	1977-1978	1993-1994	1999-2000
external inputs/ output (kcal)	0.16	0.81	0.72	0.79

2. Efficiency, what outputs?




• Accounting for multifunctionality in carbon footprint of lamb meat (Ripoll-Bosch et al., 2013)

	No allocation	Allocation	Corrected	
	kg CO ₂ -eq / kg LW	Anocation	kg CO ₂ -eq / kg LW	
Grazing	28.4 —	<u> </u>	→ 15.2	
Mixed	24.3 —	—— 73.9 % ——	→ 18.0	
Zero grazing	19.5 —	<u> </u>	→ 19.5	

3. Responsible and responsive LFS

Conceptual framework to study sustainability of LFS (Bernués et al., 2011)

