

Breeding of oilseed rape and pulses for feed and food

30th august 2021, EAAP/ATF assembly Davos

Dr. Olaf Sass, Senior breeder for canola and pulses
Norddeutsche Pflanzenzucht Hans-Georg Lembke KG

Background

- Norddeutsche Pflanzenzucht (NPZ) is a family owned plant breeding company with a history of breeding since 1892
- Today we are a leading company in breeding of winter and spring oilseed rape world wide and pulses (combining peas and fababeans)
- In rapseed we are producing certified seed of our varieties in close cooperation with DSV Lippstadt (Rapool-Ring)
- Overall 240 coworkers on 2 locations including significant breeding research
- Dr. O. Sass: responsible for the breeding of spring oilseed rape worldwide and pulses

The 2 challenges in rapeseed breeding

• 1. FOOD – vegetable oil

Erucic acid C22:1

- ➤ In old ++ type varieties > 50 %
- ➤ Goal: < 1 %, effectively < 0 %

• 2. FEED – rapeseed extraction meal

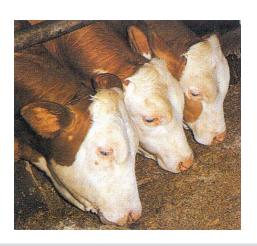
Glucosinolates

- In old ++ or +0 type varieties > 70 -100μmol GSL/g seed
- \triangleright Goal: as low as possible, min < 18 µmol GSL/g seed

Milestones in rapeseed breeding: towards 0- and 00-quality/ 1

1897	Hans Lembke – starting breeding of winter rape (++)
1960	Stefansson und Downey – Erucic acid free mutants (0) in variety LIHO
1966	Göttinger Arbeitskreis Qualitätsraps
1969	Lein, Krzymanski– low glucosinolate mutants (00) in variety BRONOWSKI, in Canada established as CANOLA
1973	First winter rape variety LESIRA with +0-quality

Today: erucic free rapeseed oil is considered one of the best vegetable oils from the nutritional perspective (and is ideal for biodiesel production)



Milestones in rapeseed breeding: towards 0- and 00-quality /2

1978	First winter rape variety LEDOS in 00-quality
Since 1986	Total conversion of the german production with 00-variety CERES ff.
	Threshold for glucosinolates: < 18 μmol GSL/g seed

High value of the residual meal/cake after oil extraction:

Rapsextraktionsschrot (RES) as a high value protein ingredient in diets for ruminants, pigs and poultry

Breeding for Quality in Rapeseed

NIRS = Near - Infrared - Reflection - Spectroscopy

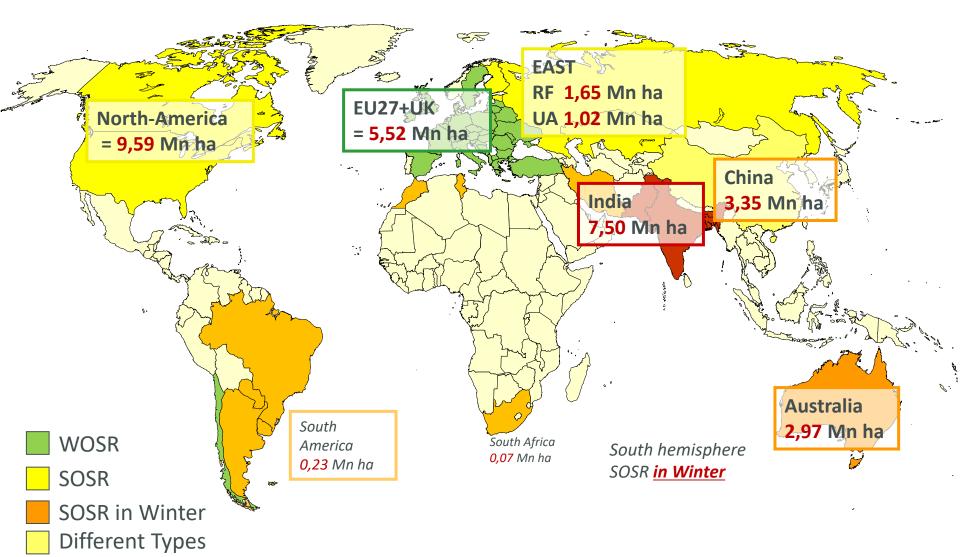
Estimation of:

- ✓ Glucosinolate content
- ✓ Oil content
- ✓ Fatty acid profile
- ✓ Protein content
- ✓ Fibre content

Rapeseed extraction meal (RES) compared to other protein feed sources

Feed	Crude fiber	Crude protein	UDP	NEL	nXP	RNB	Phosphate
	g/kg	g/kg	%				
Peas	59	220	15	7,5	165	+9,0	2,8
Corn gluten feed	80	230	25	6,9	168	+9,8	8,1
Faba beans	78	262	15	7,6	172	+14,5	5,1
Wheat/Barley stillage dry	70	350	40	6,9	250	+16,0	8,4
Rapeseed extraction meal	118	339	35	6,4	227	+19,8	11,0
Soybean extraction meal:							
- rich in hulls	80	420	30	7,4	247	+27,7	6,5
- "Standard"	60	440	30	7,6	256	+29,4	6,2
- low in hull, high protein	40	480	30	7,7	270	+33,6	6,7

UDP: undegradable Protein NEL: Net energy for Lactation


nXP: usable crude protein at the duodenum

RNB: ruminal N-balance

source: UFOP brochure

RAPESEED AREA GLOBAL F 2021/22 HARVESTED = 33,9 Mn ha

SOURCE: USDA / OIL WORLD / EUROSTATS - Jun21

Mustard, Turnip etc.

Source: NPZ /YD internal compilation

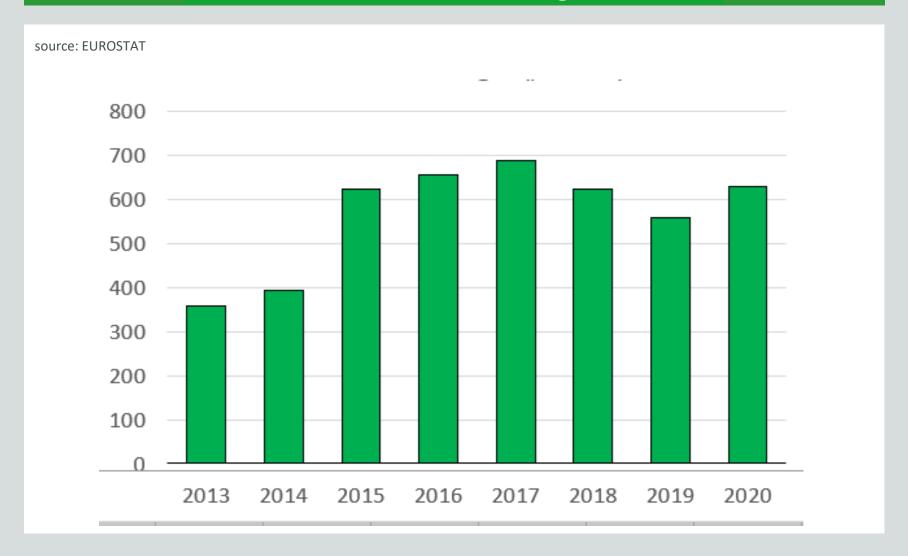
The case of oilseed rape

A world wide success story: fuelled by breeding for food **and** feed

Necessary "Ingredients"

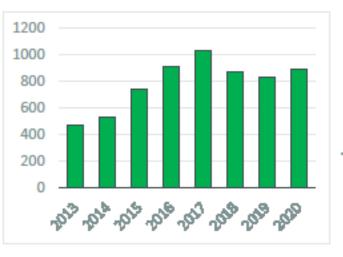
- long term strategy of all stakeholders involved: breeders, oil millers, animal nutritionists, farmers
- Detection of Mutants in the desired character in a world wide collection plant breeding was the key!
- Effective methods to score large amounts of genetics for Fatty acids and Glucosinolates

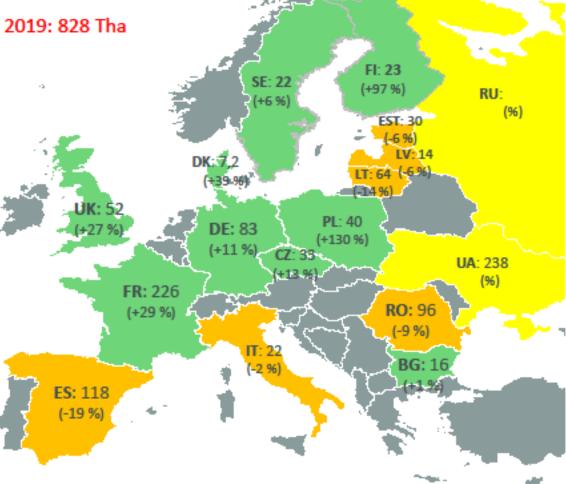
<u>Outlook:</u> Rapeseed protein is well suited for human consumption: - a future competition to the feed use?


Combining Peas (dry), faba beans and lupins in the EU

The long (and discouraging) past

- Trend for their Cultivation was negative since end of 1980s (exception: faba bean in UK)
- The "critical mass" of produce available became too low for foodstuff companies
- Home grown pulses were only paid low prices: mainly driven by cheap and abundant imports of soybeans and not reflecting the true feeding value
 - This was/is the main obstacle for any positive development
- Food market only marginally existing
- Breeding was more and more reduced, consequently progress in yield and agronomy was significantly slowed down


Evolution of faba bean acreages in the EU



Field Peas – Planting areas 2020 (in 1.000 ha)

Source: Eurostat 2020

Breeding of peas, faba beans and lupins in the EU

The Trend - the (encouraging) future?

- European pulses recently became more interesting due to
 - Urgent need to extend crop rotations
 - Very low carbon dioxide footprint due to autonomy to synthetic Nfertilizer (N-fixing capability)
 - Ecological benefits: e.g. nourishing pollinating insects, enhancing diversity
- Trend to locally produced food and vegetarian/vegan food ("plant meat")
- Food market options evolve: increasing interest in protein from peas, faba beans and lupins as an alternative to soybean protein resulting in higher added value
- No longer only the cheap, undervalued and underpaid protein feed
- Positive trend fuelled new breeding activities

The case of european pulse

A success story still to unfold?

- Added value seems to be mainly in the food sector
- Competition for raw material will be in disfavour of the feed sector
 - As a consequence of limited production in EU the quantities will most likely move into the food sector
- So far breeding goals for feed and food seem to be beneficial for both feed and food, no contrasting breeding goals yet
- Needs significant breeding inputs to stabilize and expand the acreages
- Soybeans are evolving as a serious pulse crop for many EU areas as well

