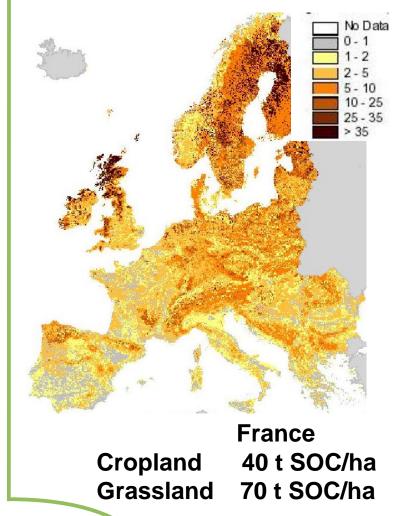
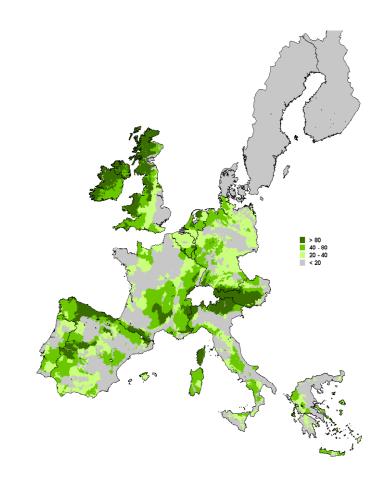

Restoring value to grasslands

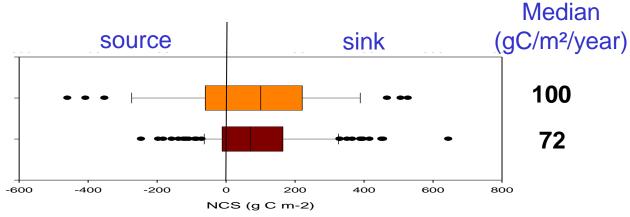
Jean-Louis Peyraud^{1,2}, Alain Peeters³

- ¹ INRA Scientific direction of Agriculture,
- ² Coordinator of the FP7 project MULTISWARD
- ³ RHEA


Seminar "Resource-use Efficiency: Implications for the Sustainability and Competitiveness of the European Livestock Sector" (Brussels, November 7th 2012) **MultiSward**


Evolution of the permanent grassland area

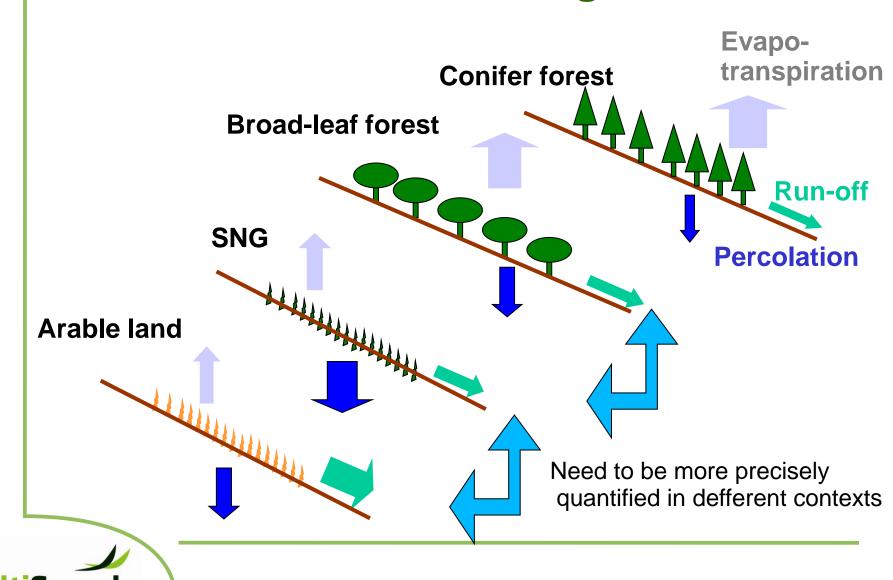
SOC content is higher under grassland


Dynamics of C flow under grassland and crop land

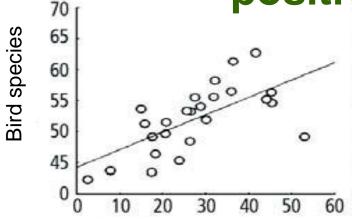
Land Use Change for European soils,

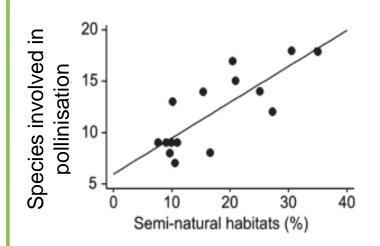
- Conversion of arable land to grassland leads to an estimated increase of Soil Organic Content of 1.44 t C/ha/yr
- Existing grasslands still build up SOC at a rate of 0.52 t/ha/yr
- Arable lands lose SOC at a rate of -0.84 ton C/ha/yr

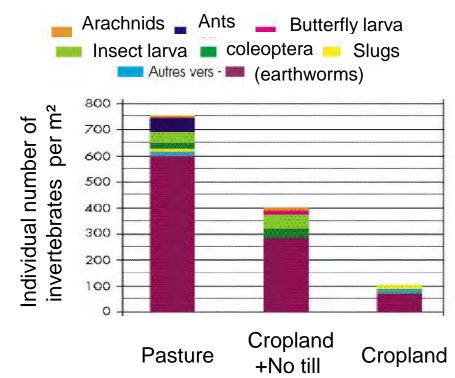
(Vleeshouwers & Verhagen, 2002).


Temporary grassland Permanent grassland

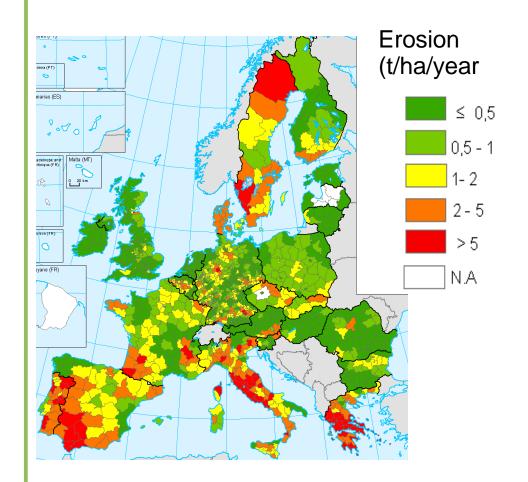
CarboEurope, GHG-Europe project, (Klumpp, Soussana et al) 38 Eu sites during 3 to 8 years




Water flows according to land use


http://www.multisward.eu

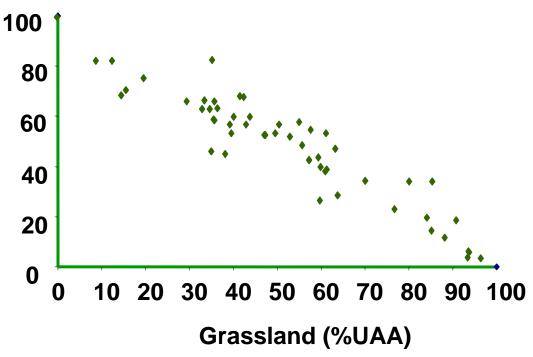
(Semi-natural) grasslands contribute positively to the biodiversity



Integration of perennial crop in rotations increase the specific wealth and abundance of invertebrates

Grassland reduces the risk of soil erosion

EU = 1,5 t/ha/year Grassland: 0,3 t/ha/year Cropland: 3,6 t/ha/year


Permanent soil cover Dense root system

> Cerdan et al. (2010) Multisward (delivrable 1.1)

Grassland contributes to reduce the use of pesticides

% area having one or more pesticide application

(Raison et al., 2008), Greendairy project

Grassland-based systems consume less non-renewable energy

Thomassen et al., 2008

4.0

Pasture/MS
Beguin et al., 2008

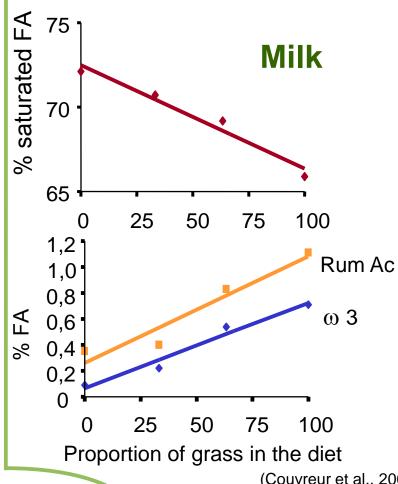
3.1

Grazing, fert N
Lovett et al., 2007

1.4

Grazing, WC
Basset-Mens et al., 2008

Le Gall et al., 2009



Most significant public goods associated with EU agriculture

	Arable land	Intensive grassland	SNG	Forest
Agricultural landscapes	+	++	+++	+
Farmland biodiversity	+/	+	+++	
Water quality			+++	+++
Water availability	-	++	+++	/+
Climate stability / C storage		+	++	+++
Control of GHG emissions	-	0/-	+	+++
Air quality	-	+	++	+++
Resilience to flooding		+	+++	+/-
Resilience to fire	+++	+++	+++	/+

Grassland contributes positively to the quality of animal product

Meat

Compared with grain-fed beef, grass-fed beef is

- Lower in total fat (1/4 to 1/3)
- Lower in saturated fatty acids
- Higher in total omega-3
- Healthier ratio of ω6 to ω3 FA (1.7 vs 5 to 14)
- Higher in CLA (cis-9 trans-11) (Duckett et al., 2009)

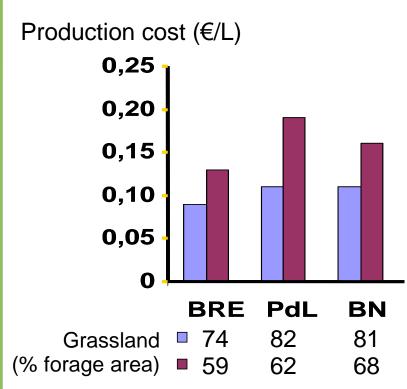
Grassland and legumes based systems increase protein self-sufficiency

Imports of soybean meal

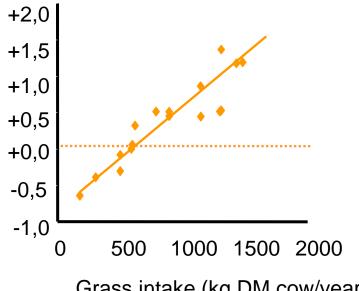
- EU-27 net imports = 32 Mt SBM equivalent to
 - 19 M ha of 'virtual land' (2007-8) (Witzke and Noleppa 2010)
 - 25% of grassland area on CP basis (Swolfs 2011, Peeters)

Atmospheric N fixation vs mineral N utilisation

180 à 200 (peas), 150 à 250 (white clover), 350 (Lucerne) kg N/ha (Peeters, 2006; Vertès et al., 2010)


Reduction of the use of soybean meal (Peyraud et al. 2009 for synthesis)

- Tall legumes are good complements to maize silage
 MS + 5 kg alfalfa (red clover) silage = 2 kg SBM for similar milk yield
- Milk yield is higher on WC-PRG pasture than on PRG pasture


Dairy systems based on grazing are competitive

(Samson et al., 2011)

Net income difference between grazing and indoor feeding (€/100 kg milk)

Grass intake (kg DM cow/year)

(Van den Pol-van Dasselaar, EGF 2010)

SWOT analysis of grassland vs Maize

Strength

- Low production costs
- Positive/very positive effect on biodiversity
- Soil and water protection (N, pesticides, permanent soil cover, C storage)
- Consumption of fossil energy
- Protein self sufficiency
- Pillar of organic farming (+ PDO products)
- Healthier and more tasty meat and dairy products

Weakness

- Management (grazing, weather conditions at harvest)
- Relatively low productivity
- Forage quality / high animal demand
- Relative high cost for silage making
- Risk of nitrate losses under Intensively managed temporary grassland

Opportunities

- Greening component of the CAP reform
- Social demand and political willingness / environment
- Increase price of fossil energy
- Meat and dairy products world market

Threats

- Reduction of agricultural support
- Reduction of the rural development policy
- Agro-fuel vs grassland
- High price of cereals
- Consumption of beef and sheep
- Accuracy of C accounting methodology

Challenges for research

Challenges for EU farming systems

- Less fossil energy demanding and more efficient converter of resources / increase of fossil fuel prices
- Environmental impact, environmental services and animal welfare / Societal acceptance of ruminant production systems:
- Competitiveness and resilience / price volatility

Progress

- A new integration of grassland and arable land at the farm and/or the region levels: management for maximising benefits
- N fixation by legumes: yield, management of rotation, benefits for animals
- The right cow for the right system
- A special effort by livestock systems: less energy efficient than arable systems per kg of food produced / production of other services
- Political and economical tools to facilitate transitions: Cost of public policy, implication of all the food chain actors

Thank you

